Hegedűs Pál

Beosztás: 
egyetemi docens
Fokozat: 
habilitált doktor
Szoba: 
H505
Email: 
hegpal@math.bme.hu
Telefon: 
463-2094
Önéletrajz PDF fájl

Kurzusok

Tantárgy neve Kurzus kód
Algebra 1 BMETE91AM38/TV
Algebra 1 BMETE91AM38/AV
Csoportelmélet BMETE91MM03/T0
Csoportelmélet BMETE91MM03/T1
Felsőbb matematika villamosmérnököknek - Haladó lineáris algebra BMETE90MX54/V5

Oktatás

Autumn 2023 Vector and Matrix Algebra Quickies #1-8.

2024. tavasz Csoportelmélet feladatsor.

Spring 2024 Introduction to Algebra 2 topics for the exam.

Autumn 2023 Vector and Matrix Algebra topics for the exam.

Autumn 2023 Algebra 1 topics for the exam.

Spring 2023 Introduction to Algebra 2 topics for the exam.

2023. tavasz Reprezentáció Elmélet feladatok, Representation Theory problems.

Autumn 2022 Introduction to Algebra 1 Example Sheets 1 2 3 4 5 6 7 8 9 10 11 12 Extra Sheets 1 2 3. Topics for the exam.

Autumn 2022 Algebra 2 exercises. Topics for the exam.

2022. tavasz Csoportelmélet feladatok, Group Theory problems. A feladatsorokból beadandó feladatok/The required exercises from the example sheets: 1/9, 2/6, 3/6, 4/8, 5/6, 6/5, 7/5, 8/5.

2021. őszi Algebra 1 tematika

2021. őszi Algebrai Kombinatorika végleges feladatsor

Autumn 2021 Algebra1 topics

Autumn 2021 Algebra Final solutions of the problems

Kutatás

Publikációk és hivatkozások:
MTMTORCIDGoogleScholarScopus

Véges csoportok reprezentációelmélete / Representation Theory of  Finite Groups

Algebrai Kombinatorika / Algebraic Combinatorics

Véges és végtelen csoportelmélet / Group Theory (finite and infinite)

Algebrai kódelmélet, kriptográfia / Algebraic Coding Theory, Cryptography

Algebrai deriválások / Algebraic Derivations

Algebra

Kiemelt publikációk

Pál Hegedüs. Gelfand pairs for affine Weyl groups. ADV. GROUP THEORY APPL. 16, 91-108, 2023.  Link

Márton Erdélyi; Pál Hegedüs; Sándor Kiss; Gábor Nagy. On Linear Codes with Random Multiplier Vectors and the Maximum Trace Dimension Property. https://doi.org/10.1515/jmc-2023-0022

Ron Adin; Pál Hegedüs and Yuval Roichman. Higher Lie characters and root enumeration in classical Weyl groups. ArXiV

Ron Adin; Pál Hegedüs and Yuval Roichman. Higher Lie characters and cyclic descent extension on conjugacy classes. ALGEBR. COMB. 6, No. 6, 1557-1591, 2023.  https://doi.org/10.5802/alco.323

Ron Adin, Pál Hegedüs and Yuval Roichman. Combinatorial flip actions and Gelfand pairs for affine Weyl groups. JOURNAL OF ALGEBRA, 607(A):5-33, 2022. https://doi.org/10.1016/j.jalgebra.2021.10.034

Ivan Andrus, Pál Hegedűs, and Tetsuro Okuyama. Transposable character tables and group duality. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 157:31–44, 2014. https://doi.org/10.1017%2FS0305004114000218

Tuǧba Aslan and Pál Hegedűs. Maximal deviation of large powers in the Nottingham group. JOURNAL OF GROUP THEORY, 22:397–418, 2019. https://doi.org/10.1515%2Fjgth-2018-0133

Károly (Ifj.) Böröczky and Pál Hegedűs. The cone volume measure of antipodal points. ACTA MATHEMATICA HUNGARICA, 146:449–465, 2015. https://doi.org/10.1007%2Fs10474-015-0511-z

Károly (Ifj.) Böröczky, Pál Hegedűs, and G Zhu. On the discrete logarithmic Minkowski problem. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016:1807–1838, 2016. https://doi.org/10.1093%2Fimrn%2Frnv189

Trevor Chimpinde and Pál Hegedűs. When every irreducible character is a constituent of a primitive permutation character. PUBLICATIONES MATHEMATICAE DEBRECEN, 92:217–221, 2018. https://doi.org/10.5486%2FPMD.2018.7942

Pál Hegedűs. Regular subgroups of the affine group. JOURNAL OF ALGEBRA, 225:740– 742, 2000. https://doi.org/10.1006%2Fjabr.1999.8176

Pál Hegedűs. The Nottingham group for p=2. JOURNAL OF ALGEBRA, 246:55–69, 2001. https://doi.org/10.1006%2Fjabr.2001.8948

Pál Hegedűs. Structure of solvable rational groups. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 90:439–471, 2005. https://doi.org/10.1112%2FS0024611504015035

Pál Hegedűs, Attila Maróti, and László Pyber. Finite groups with large Noether number are almost cyclic. ANNALES DE L INSTITUT FOURIER, 69:1739–1756, 2019. https://doi.org/10.5802%2Faif.3280

Pál Hegedűs and Janusz Zielinski. The constants of Lotka-Volterra derivations. EUROPEAN JOURNAL OF MATHEMATICS, 2:544–564, 2016. https://doi.org/10.1007%2Fs40879-015-0091-z