Introduction to Algebra

Example sheet 6

Autumn 2022

1. Let $n \ge 2$ be an integer and a another such that (a, n) = 1. Show that $a^k \equiv 1 \pmod{n}$ if and only if $o_n(a)|k$.

2. As a consequence of the previous exercise show that $a^k \equiv a^l \pmod{n}$ if and only if $k \equiv l \pmod{o_n(a)}$.

3. Show that there is no primitive root modulo 2^a if $a \ge 3$. (Use induction on a. We know that for a = 3 there is no.)

4. Show that if $n = n_1 n_2$, where $(n_1, n_2) = 1$ and $(\varphi(n_1), \varphi(n_2)) > 1$ then there is no primitive root modulo n. (Our agrument was as follows: if (g, n) = 1 then $g^{\varphi(n_1)} \equiv 1$ $(\text{mod } n_1)$ and $g^{\varphi(n_2)} \equiv 1 \pmod{n_2}$, so $g^l \equiv 1 \pmod{n_1}$ and $g^l \equiv 1 \pmod{n_2}$ for the least common multiple $l = [\varphi(n_1), \varphi(n_2)] < \varphi(n_1)\varphi(n_2) = \varphi(n)$.)

5. Show that modulo a prime the product of two quadratic nonresidues is a quadratic residue!

6. Show that -1 is a quadratic residue modulo p for primes $p \equiv 1 \pmod{4}$ and -1 is a quadratic nonresidue if $p \equiv 3 \pmod{4}$.

- **7.** Suppose $o_n(a) = u$; $o_n(b) = v$.
- (i) Show that $o_n(a^k) = \frac{u}{(u,k)}$.
- (ii) Show that $o_n(ab)|[u, v]$.
- (iii) If further v|u and v < u then $o_n(ab) = u$.

8. Show that modulo a prime greater than 3 the sum of quadratic residues is 0.

9. Divide x⁴ - 2x + 5 with remainder by
a) x² - x + 2,
b) x + 1,
c) (x + 1)² and
d) x² - 1!

10. What is the greatest common divisor of $a(x) = x^3 - 2x^2 + x - 1$ and $b(x) = x^2 + 2$? Find polynomials p and q such that gcd(a, b) = pa + qb.

11. What are the irreducible polynomials

- (i) of degree 2, 3 and 4 over \mathbb{F}_2 and
- (ii) of degree 2 and 3 over \mathbb{F}_3 ?

12. What is the gcd and lcm of $(x-2)^2(x+\pi)^5(x-3)(x-4)^2$ and $(x-2)(x+\pi)^2(x-3)^3$?

- **13.** How to choose $a \in \mathbb{R}$ such that $(x+1)^2 | x^5 ax^2 ax + 1$?
- 14. Show that a polynomial of degree 3 with no root is irreducible.
- 15. Show that every polynomial in $\mathbb{R}[x]$ of odd degree has at least one real root!