Introduction to Algebra

1. Suppose $f(x) \in \mathbb{R}[x]$ of degree *n* has (complex) roots $\alpha_1, \ldots, \alpha_n$. Show that $\alpha_1^k + \alpha_2^k + \cdots + \alpha_n^k$ is real for all *k*.

2. Suppose the monic $f(x) \in \mathbb{C}[x]$ of degree *n* has roots $\alpha_1, \ldots, \alpha_n$ such that $\alpha_1^k + \alpha_2^k + \cdots + \alpha_n^k$ is real for all *k*. Show that $f(x) \in \mathbb{R}[x]$.

3. Factorise $x^4 + 1$ into a product of irreducibles over \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} respectively.

4. Show that the roof α of f(x) has multiplicity k if and only if $x - \alpha | f^{(j)}(x)$ for $j = 1, \ldots, k - 1$, but $x - \alpha \nmid f^{(k)}(x)$.

5. Let α, β, γ be the roots of $x^3 + ax^2 + bx + c$. Determine the monic polynomial of degree 3 whose roots are

$$\alpha+\beta,\quad\beta+\gamma,\quad\alpha+\gamma$$

6. Using the Schönemann-Eisenstein criterion for suitable primes or otherwise show that $\Phi_n(x)$ is irreducible over \mathbb{Z} for $n \leq 12$.

7. HW Let α, β, γ be the roots of $x^3 + ax^2 + bx + c$. Determine the monic polynomial of degree 3 whose roots are

$$\frac{\alpha+\beta}{\gamma}, \quad \frac{\beta+\gamma}{\alpha}, \quad \frac{\alpha+\gamma}{\beta}.$$

8. Prove the "other" Schönemann-Eisenstein criterion: Let p be a prime and $f(x) \in \mathbb{Z}[x]$, $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ such that p does not divide a_0 , but divides a_i for i > 0 and p^2 does not divide a_n . Prove that if f(x) = g(x)h(x) then g(x) or h(x) is of degree 0.

9. Let $x_1, \ldots x_n$ be indeterminates and e_k denote the k-th elementary symmetric function, p_k the k-th power sum and h_k the sum of all monomials of dgree k (these are called the *complete* symmetric functions). For a new variable t, define

$$E(t) = 1 + \sum_{k=1}^{n} e_k t^k, \quad P(t) = \sum_{k=1}^{\infty} \frac{p_k}{k} t^k, \quad H(t) = 1 + \sum_{k=1}^{\infty} h_k t^k.$$

The first is a polynomial, the other two are power series! Show that

$$E(t) = \prod_{i=1}^{n} (1 + x_i t), \ H(t)E(-t) = 1 \text{ and } P(t) = \log H(t).$$

10. Let m, n be positive integers. Suppose that the complex numbers z_1, \ldots, z_n are such that

$$z_1^k + z_2^k + \dots + z_n^k = m, \quad (\forall 1 \le k \le n).$$

Prove that z_1, \ldots, z_n are the roots of the polynomial

$$f(x) = x^{n} - \binom{m}{1}x^{n-1} + \dots + (-1)^{k}\binom{m}{k}x^{n-k} + \dots + (-1)^{n}\binom{m}{n}.$$