Introduction to Algebra

- **1.** True or false?
- (i) If $f(x) \in \mathbb{Z}[x]$ has an integer root then it is not irreducible in $\mathbb{Q}[x]$.
- (ii) If $f(x) \in \mathbb{Z}[x]$ is not irreducible in $\mathbb{Q}[x]$ then it not irreducible in $\mathbb{Z}[x]$.
- (iii) If $f(x) \in \mathbb{Z}[x]$ and it has a rational root then it has a degree 1 divisor in $\in \mathbb{Z}[x]$.
- (iv) If $f(x) \in \mathbb{Q}[x]$ and f(n) is an integer for every $n \in \mathbb{Z}$ then $f(x) \in \mathbb{Z}[x]$.

2. Find the roots of the following polynomials and decompose to product of irreducibles over \mathbb{R} , \mathbb{C} and \mathbb{F}_5 !

- (i) $2x^3 7x^2 + 2$,
- (ii) $x^6 2x^5 x^4 + 4x^3 5x^2 + 6x 3$ and
- (iii) $x^5 + 1$.
 - **3.** Decompose $x^p 1 \in \mathbb{F}_p[x]$ into a product of irreducible polynomials.