- **1.** True or false for complex sesquilinear functions?
- (i) If B is diagonal in a basis then B is Hermitian.
- (ii) If B is Hermitian then its matrix has positive real determinant.
- (iii) If B(v, w) = 0 for some $v, w \in \mathbb{C}^n$ then B(w, v) = 0.
- (iv) If B is Hermitian and B(v, w) = 0 for some $v, w \in \mathbb{C}^n$ then B(w, v) = 0.
- (v)* If B(v, w) = 0 implies B(w, v) = 0 for $v, w \in \mathbb{C}^n$ then cB is Hermitian for some $0 \neq c \in \mathbb{C}$.
 - 2. Verify the following for subspaces U_1, U_2 of a (real/complex) Euclidean space V.
 - (i) $U_1 \leq U_2 \Leftrightarrow U_1^{\perp} \geq U_2^{\perp}$.
- (ii) $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- (iii) $(U_1 \cap U_2)^{\perp} = (U_1^{\perp} + U_2^{\perp}).$
 - **3.** Verify the following two claims for vectors of a complex Euclidean space V.
- (i) $iv + w \perp v iw$ if and only if v = iw.
- (ii) $v + iw \perp v iw$ if and only if ||v|| = ||w|| and (v, w) is purely imaginary.

4. Convert the following real quadratic functions to a sum of signed squares using (orthogonal) diagonalisation.

(i) x_1x_2 ; (ii) $2x_1x_2 - 2x_2x_3$; (iii) $x_1^2 - x_3^2 + 2x_1x_2 + 2x_1x_3$; (iv) $x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$.

5. HW Convert the real quadratic function f(x, y, z, u) = xy + yz + zu + ux to a sum of signed squares using (orthogonal) diagonalisation. Detail your computation.

6. Let $V = \mathbb{C}^n$ a complex Euclidean space. Show that the following are equivalent for a $\varphi \in \text{Hom}(V)$.

(i) φ is normal;

- (ii) $||\varphi(v)|| = ||v||$ for all $v \in \mathbb{C}^n$.
- (iii) There exists $f(x) \in \mathbb{C}[x]$ such that $\varphi^* = f(\varphi)$.

7. Suppose $A, B \in M^{n \times n}(\mathbb{C})$ are normal and AB = BA. Show that AB and A + B are also normal and there exists an orthonormal basis where both A and B become diagonal (a common eigenbasis).

8. What is the set of values $\{Q(v) \mid v \in \mathbb{C}^n\}$ of a Hermitian quadratic form Q? Give an example of a complex sesquilinear function B such that the set of values of its quadratic form is $\{Q(v) \mid v \in \mathbb{C}^n\} = \{z \in \mathbb{C} \mid \operatorname{Re}(z) = \operatorname{Im}(z)\}$, a line on the complex plane.