Introduction to Algebra Example sheet 8

1. Which of the following are linear maps from the vector space $M = F^{3\times 3}$ to itself? If it is then determine the kernel and image.

- (i) Fix $B \in M$ and $\varphi(A) = AB$;
- (ii) Fix $B \in M$ and $\psi(A) = BA$;
- (iii) $\eta(A) = A^2;$
- (iv) $\xi(A) = A^T$;
- (v) $\nu(A)$ is A, but all its last column is replaced by 0's.
 - **2.** True or False? ($\varphi \in \text{Hom}(V, W)$ and $v_1 \dots v_k \in V$.)
- (i) If v_1, \ldots, v_k are independent in V then $\varphi(v_1), \ldots, \varphi(v_k)$ are independent in W.
- (ii) If $\varphi(v_1), \ldots, \varphi(v_k)$ are independent in W then v_1, \ldots, v_k are independent in V.
- (iii) If v_1, \ldots, v_k span V then $\varphi(v_1), \ldots, \varphi(v_k)$ span W.
- (iv) If v_1, \ldots, v_k span V then $\varphi(v_1), \ldots, \varphi(v_k)$ span $\operatorname{Im}(\varphi)$.
- (v) If $\varphi(v_1), \ldots, \varphi(v_k)$ span Im (φ) then v_1, \ldots, v_k span V.
 - **3.** Suppose dim(V) = n and dim(W) = k. What is the dimension of Hom(V, W)?
 - **4.** Suppose $U, W \leq V$.
- (i) Show that $\dim(U) + \dim(W) \ge \dim(U+W)$.
- (ii) Show that if $V = U \oplus W$ then $\dim(U) + \dim(W) = \dim(V)$.

(iii) In fact, show that $\dim(U) + \dim(W) = \dim(U+W) + \dim(U \cap W)$ always holds.

5. Suppose $\varphi \in \text{Hom}(V, V)$ (usually we call it Hom(V) for brevity). Then $\text{Ker}(\varphi), \text{Im}(\varphi) \leq V$. Give and example when $V = \text{Ker}(\varphi) \oplus \text{Im}(\varphi)$ and give an example when the sum is not direct.

6. HW Let V be the \mathbb{F}_2 -vectorspace consisting of subsets of $\{a; b; c; d; e; f\}$ as in the Study Room sheet 8 exercise 1.(xii). Define an isomorphism between V and \mathbb{F}_2^6 . Verify its properties.

7. Let $\varphi \in \text{Hom}(V, W)$. Suppose v_1, \ldots, v_k are independent in V and $\varphi(v_i) = \varphi(v_j)$ for all $1 \leq i, j \leq k$. Show that dim Ker $(\varphi) \geq k - 1$.

8. Suppose V, W are vector spaces over the same field F. Show that one of them is isomporhic to a subspace of the other.