- **1.** True or false?
- (i) If $f(x) \in \mathbb{Z}[x]$ of degree 3 has 3 rational roots then product of the roots is an integer.
- (ii) If $f(x) \in \mathbb{Z}[x]$ of degree 2 has 2 real roots then the difference of the roots is an integer.
- (iii) If $f(x) \in \mathbb{C}[x]$ of degree *n* and every power sum of its *n* roots is an integer then $f(x) \in \mathbb{Q}[x]$.

2. Express the following polynomials using the elementary symmetric polynomials

- (i) $x^5y^2 + x^2y^5$ in 2 variables,
- (ii) $x^3y^2 + x^3z^2 + x^2y^3 + x^2z^3 + y^3z^2 + y^2z^3$ in 3 variables and
- (iii) $t^8 + u^8$ in 2 variables.

3. Suppose a, b, c are the real numbers such that a+b+c=2, $a^2+b^2+c^2=6$ and abc=-2. Provide a (monic) polynomial whose roots are exactly a, b, c.

4. * Suppose the real polynomial $f(x) = x^3 + px + q$ has three real roots. What should hold for the coefficients p, q?