
Rough Syllabus, Part 6
Linear mappings

1. Definition. Let H and G be vector spaces over the same number field K, with dimension
of n, and m, respectively. The mapping T (H → G) is called a linear mapping, if with
notations T (x1) = y1, T (x2) = y2, x1, x2 ∈ H, y1, y2 ∈ G

T (αx1 + βx2) = αT (x1) + βT (x2) = αy1 + βy2.

1. Theorem. In the case of a linear mapping the image of the space H is a subspace of G.
It is denoted by Im(T ).

2. Theorem. The set of vectors in H for which T (x) = 0 form a subspace of H, and it is
denoted by Ker(T ).

Examples: Projections of vectors in R3 perpendicularly on a line (constant multiple of a
given vector) or on a plane (linear combination of two nonparallel vectors); Definite integral
of continuous functions on [a, b]; Derivation of functions; For polynomials of degree not more
than two p(x) 7→ (x+ 2)p′(x); If a is a given vector of R3, then r 7→ a× r.

If the values of the linear mapping T are given on a basis (fundamental system), then
the mapping is defined uniquely on the total space, since the linear combinations are given
uniquely:
Let a1, a2,...,an be a basis in H, and let their images be
T (ai) = ci ∈ G. (The vectors ci can be also linearly dependent, e.g. any or each of them can
be the o vector.) If x = α1a1 + α2a2 + · · ·+ αnan, then
T (x) = T (α1a1 + α2a2 + · · ·+ αnan) = α1c1 + α2c2 + · · ·+ αncn

Let denote the dimension of a linear space A by dim(A). Assume dim(T ) = n, dim(G) =
m. If there are bases in both spaces, then the vectors in both spaces can be given by
coordinates, and the image of vector x is:

T (x) = Cx ∈ G,

where the columns of matrix C are the images of the basis of H given by their coordinates
with respect to the basis in G. Vector x is given by its coordinates with respect to the basis
in H consisting of vectors {ai}.

3. Theorem. The dimension of Im(T ) ⊆ G is equal to the rank of its matrix C, i.e.
dim(Im(T )) = ρ(C).

4. Theorem. The dimension ofKer(T ) ⊆ H is equal to (dim(H)−ρ(C)), i.e. dim(Ker(T )) =
ρ(C), where C is the matrix of T .

Obviously, when we change the basis in any of the spaces, the matrix of the mapping C
will change as well, but its rank stays the same.

If H = G, then we apply the same basis, and in this case matrix C is quadratic. How
matrix C is changing, when the basis is changed? We know that the new coordinates can be
get by the multiplication of matrix B−1, where the columns of B are the vectors of the new
basis given by coordinates with respect to the old one. By simple formal change:

Cx = y

B−1Cx = B−1y

B−1CBB−1x = B−1y

(B−1CB)(B−1x) = (B−1y).
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Since B−1x and B−1y contain the coordinates of the independent variable and of the image
with respect to the new basis, the matrix of the mapping with respect to the new basis is
S = B−1CB obviously.

In the general case, similarly: If T is a linear mapping H → G whose matrix is C, then
changing the basis in H where the coordinates of the new basis with respect to the old one
are given in BH , then the matrix of the mapping changes into CBH , while changing the basis
in G, where the coordinates of the new basis with respect to the old one are given in BG,
then the matrix of the mapping T changes into B−1G C.

The linear mappings H → H are called linear transformations.

2. Definition. Let A be a linear transformation. If a subspace V ⊆ H is such that for every
x ∈ V Ax ∈ V , then V is called an invariant subspace of A.

3. Definition. Let A be a linear transformation. If Ax = λx for an x 6= 0, then λ is called
an eigenvalue of transformation A and x is an eigenvector of transformation A associated
to the eigenvalue λ.

Examples: Projection in R3 onto a plane; derivation of eax, axn.
Let fix a basis in H. Consider the matrix of the mapping A.

Ax = λx
Ax− λx = (A− λI)x = 0.

4. Definition. Let A be a quadratic matrix. If Ax = λx for an x 6= 0, then λ is called an
eigenvalue of matrix A and x is an eigenvector of matrix A associated to the eigenvalue
λ.

This homogeneous linear system has a nontrivial solution only if the columns of A are
linearly dependent, i.e.
det(A − lambdaI) = |A − λI| = 0. This determinant is a polynomial of degree n, so it can
not have more different roots than n.

5. Definition. The polynomial det(A− lambdaI) is called the characteristic polynomial of
A.

The roots of the characteristic polynomial are the eigenvalues of A. After the roots
λ1, λ2, . . .λk are determined, the associated eigenvectors can be found from the equations
(A− λiI)x = 0.

5. Theorem. Some statements about eigenvectors:
-Eigenvectors associated to the same eigenvalue form a subspace. These subspaces are inva-
riant subspaces. -To every eigenvalue there is at least one associated eigenvector (i.e. the
subspace of the associated eigenvectors has dimension at least one). -Eigenvectors associa-
ted to different eigenvalues are linearly independent. -The number of linearly independent
eigenvectors associated to eigenvalue λi can not exceed the multiplicity of this eigenvalue in
the characteristic polynomial, but maybe less.

6. Definition. Matrices A and C are called similar if there is an invertable matrix B such
that A = B−1CB.

Since we have seen above that similar matrices describe the same mapping in different
basis, their basic properties are the same. E.g. they have the same eigenvalues with the same
number of linearly independent eigenvectors, etc. .

2



6. Theorem. Similar matrices have the same characteristic polynomial.

Proof: |B−1AB−λI| = |B−1AB−λB−1B| = |B−1(A−λI)B| = |B−1||A−λI||B| = |A−λI|
This statement can not be reversed, e.g.:

A =

1 0 0
0 1 0
0 0 1

 B =

1 1 0
0 1 1
0 0 1


For A, every vector of the space is an eigenvector associated to 1, so there are three linearly
independent among them, but matrix B has only one linearly independent eigenvector asso-
ciated to 1.

These two matrices have the same characteristic polynomial but they are not similar,
they have a very different structure. The theory of elementary divisors of matrices discusses
these questions.

7. Theorem. Cayley-Hamilton
Every matrix satisfies its characteristic polynomial, i.e. p(A) = 0.

If we restrict our investigations for real matrices, then it can happen that a matrix does
not have any eigenvalue and eigenvectors, since there are real polynomials without any real
root. Every real polynomial with leading coefficient 1 can be the characteristic polynomial
of a matrix:

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = (−1)n|A− λI|

where

A =



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
0 0 0 0 . . . 0 1
−a0 −a1 −a2 −a3 . . . −an−2 −an−1


If we consider matrices as complex matrices, then their characteristic polynomials can

be decomposed into a product of n linear factors. I.e. considering the complex case, every
matrix has at least one eigenvalue.

There are several theorems and procedures about how to reveal the structure of a ma-
trix, consequently the structure of the corresponding linear transformation, we discuss only
a special case of it.

8. Theorem. If a linear transformation has n linearly independent eigenvectors, then the
eigenvectors can be chosen as a basis, and in this basis the matrix of this linear transformation
is diagonal.

9. Theorem. If A is selfadjoint (in the real case it means symmetric), then all eigenvalues
are real, and it has n linearly independent eigenvectors, and they can be chosen orthogonally.

Corollary: Since the length of eigenvectors can be arbitrary (not zero), the eigenvectors
of a selfadjoint matrix can be chosen to form an orthonormed basis.

7. Definition. A linear transformation T is called selfadjoint, if 〈v, Tw〉 = 〈vT,w〉

10. Theorem. The matrix of a selfadjoint transformation is a selfadjoint matrix.

Let B a selfadjoint matrix. Then (x∗Bx) is always real.
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8. Definition. -If x ∗Bx > 0 for every x 6= 0, then B is called positive definite;
-If x ∗Bx ≥ 0 for every x 6= 0, then B is called positive semidefinite;
-If x ∗Bx < 0 for every x 6= 0, then B is called negative definite;
-If x ∗Bx ≤ 0 for every x 6= 0, then B is called positive semidefinite;
-If x ∗Bx takes positive and negative values as well, then B is called indefinite.

Examples: [
1 0
0 1

] [
1 0
0 0

] [
−1 0
0 −1

] [
−1 0
0 0

] [
−1 0
0 1

]
Observe, the weight matrix discussed at inner product is a positive definite matrix. Furt-

hermore, the eigenvalues of a positive definite matrix are positive numbers, the eigenvalues of
a positive semidefinite matrix are positive numbers and zeros, the eigenvalues of a negative
definite matrix are negative numbers, the eigenvalues of a negative semidefinite matrix are
negative numbers and zeros, an indefinite matrix has positive and also negative eigenvalues.

Positive definite (or semidefinite) matrices have some special properties which can be ef-
ficiently used in the case of solving linear system of equations with these type of coefficient
matrix. That is why some numerical solution procedures solves the equation A∗Ax = A∗b
instead of Ax = b.

Of course, to find the eigenvalues from the characteristic polynomial of a matrix of order
higher then four is not easy. But there is a relatively easy way to define the definiteness
of some selfadjoint matrices. Procedure: Let create the sequence of the subdeterminants of
the left upper corner. If this sequence has the sequence of signs: +,+,+,+, , . . . , then the
matrix is positive definite. If this sequence has the sequence of signs: −,+,−,+, , . . . , then
the matrix is negative definite. If there are ”misplaced” signs, then the matrix is indefinite.
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