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Definition
A semifield (S, +, *) is a non-associative ring whose nonzero

elements form a loop under multiplication.

In other words,
e (S,+) is an abelian group;
e x is both left- and right-distributive over +;
e there is a multiplicative identity;

e for each a and each nonzero b € S, there exist unique x and y

such that bxx =aand y x b= a.

If S does not necessarily have a multiplicative identity, then it is a
presemifield.
2/35



e In this talk, we only concern finite semifields.

3/35



e In this talk, we only concern finite semifields.

e |S| is a prime power, and its additive group is elementary
abelian.

3/35



e In this talk, we only concern finite semifields.

e |S| is a prime power, and its additive group is elementary
abelian.

e S can be identified as Fg’.

3/35



e In this talk, we only concern finite semifields.

e |S| is a prime power, and its additive group is elementary

abelian.

e S can be identified as Fg’.

e When % is commutative, S is called a commutative semifield.

3/35



e In this talk, we only concern finite semifields.
e |S| is a prime power, and its additive group is elementary
abelian.

e S can be identified as Fg’.

e When % is commutative, S is called a commutative semifield.

Dickson’s semifield (FZ,+, ) (1906)
Let g be a power of an odd prime p, o a non-square in Fg and
o € Aut(Fy).

3/35



e In this talk, we only concern finite semifields.

e |S| is a prime power, and its additive group is elementary
abelian.
e S can be identified as Fg'.

e When % is commutative, S is called a commutative semifield.

Dickson’s semifield (FZ,+, ) (1906)
Let g be a power of an odd prime p, o a non-square in Fg and
o € Aut(Fy).

(a,0) + (¢, d) := (a+ ¢, b+ d),

(a,b) * (c,d) := (ac + a(bd)?, ad + bc).
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Projective planes

P := (P, L C 2%) is a projective plane, if

e for P# Q € P, d unique ¢ € L such that P, Q € ¢,
e for { # m € L, 3 unique P € P such that P € ¢/, m;

e there exists quadrangle, i.e. four points no three of which
belong to one line.

Given a semifield (S, +, ), it coordinatizes a projective plane.
Points: (x,y) € S xS, (a), (c0).

Lines: £, ={(x,axx+b):x €S}, lc={(c,y):y €S},
loo ={(a) :a € SU{o0}}.
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Definition
Given two (pre)semifields (Fg', +, x) and (Fg', +, x). If there exist
three bijective additive mappings L, M, N : Fg" — Fg" such that

M(x) x N(y) = L(x * y)
for any x,y € Fg', then they are isotopic.
Theorem (Albert 1960)

Two (pre)semifields coordinatize isomorphic projective planes if
and only if they are isotopic.
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e Presemifields can be “normalized” to semifields via isotopism.
Given (S,+,*) and a # 0, a* a is the identity of o

(x*xa)o(axy)=xx*y.

e Left nucleus:
Ni(S)y={aeS:(axx)xy=ax(xx*xy)forall x,y €S}

e Middle nucleus:
Nm(S)={aeS:(xxa)xy=xx(axy)forall x,y €S}.

e Right nucleus:
N(S)={aeS:(x*xy)*sa=xx(y=a)forall x,y €S}

e All these nuclei of semifields are invariant under isotopism and

they are all finite fields.
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e Knuth(1965)’s semifields, containing Dickson(1906)’s semifields and
Hughes-Kleinfeld(1960) semifields

e Ganley commutative semifields, 1981
e Cohen-Ganley commutative semifields, 1982

e Cyclic semifields (Jha and Johnson 1989), generalizing
Sandler(1962)'s semifields

e Kantor(2003) commutative semifields generalizing Knuth(1965)'s
binary semifields.

e Bierbrauer, Budaghyan-Helleseth, Coulter-Matthews-Ding-Yuan,
Lunardon-Marino-Polverino-Trombetti, Zha-Kyureghyan-Wang- - -
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Conjecture (Kantor,2003)
The number of pairwise non-isotopic semifields of order N is not
bounded above by a polynomial in N.

e For N even, the conjecture is true (Kantor's commutative
semifields).

e For N odd, the number of known semifields is less than
cv/Nlog,(N).

e The number of known commutative semifields of order N is
bounded above by c(log, N)?. 8/35
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Cyclic semifields

For o € Gal(Fgn/Fq), i.e. x7 = x9 let R = Fgn[X; o] be a skew
polynomial ring in which Xa = a3 X.
e R is a non-commutative integral domain.
e R is both left- and right-Euclidean domain, with the usual
degree function.
e Let f be an irreducible polynomial in R, deg(f) = s,
S={g € R:deg(g) <s—1}. Define g« h:=gh
mod , f(X").
e (S,+,x) is a semifield.
o (Fgn[X; (1), +,-) = (Ln,q)[X], +,0) and take f(X) = X — 1,
(Fqr[X; ()], +,)/(X" = 1) 2 (Ln,q)[X], +,0)/(XT" = X).
e For given N = g", there are at most /N log,(/N) cyclic
semifields (Kantor,Liebler 2008). 10/35
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Definition
Let 0,7 € Aut(Fy) and a € F, such that a = x~1y™ ! has no
solution. Define

xxy=xy—ax’y".

Then (Fgq, +, *) is a presemifield, called Albert’s twisted field.

By twisting some other known semifields, people have found more
new semifields.

e Pott-Z. commutative semifields, 2013.
e Dempwolff semifields, 2013.

e Twisted cyclic semifields by Sheekey, arxiv.
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o (a,b)x(c,d) = (aoxc+ a(boyd)?,ad + bc), where a a
non-square.

o (Fgp,+,*) is a commutative presemifield (Pott, Z. 2013).

e This construction has two parameters k and o.

e Let g = p™ where p is a prime, m = 2%y with ged(p,2) = 1.
This construction gives exactly |5 |[7'] non-isotopic

presemifields.

e It gives us the bound c(log, ) of known commutative

semifields.
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Twisting approach

xoy=xy—ax?y”
e Dempwolff’s semifields
(u,v) x (x,y) = (ux +voy,uy +((vox))
where o defines a twisted field.
e Let f be an irreducible polynomial in R, deg(f) = s,
S={g=>gX €Fg[X;0]:deg(g) <s—1}.
Define g x h:=gh mod ,f(X") for g,h € S. (S,+,x*) is a
cyclic semifield.

13/35



Twisting approach

xoc=cx—ac’ x?
e Dempwolff’s semifields
(u,v) % (x,y) = (ux + voy,uy + ((vox))
where o defines a twisted field.
e Let f be an irreducible polynomial in R, deg(f) = s,
S={g=>gX €Fg[X;0]:deg(g) <s—1}.
Define g x h:= gh mod ,f(X") for g,h € S. (S,+,x*) is a
cyclic semifield.

13/35



Twisting approach

xoc=cx—ac’ x?
e Dempwolff’s semifields
(u,v) % (x,y) = (ux + voy,uy + ((vox))

where o defines a twisted field.

e Let f be an irreducible polynomial in R, deg(f) = s,
S={g=28X €Fqg[X;0]:deg(g) <s, g =ngf}.
Define g x h:=gh mod ,f(X") for g,h € S. (S,+,x*) is a

twisted cyclic semifield (Sheekey arxiv).

13/35



Twisting approach

xoc=cx—ac’ x?
e Dempwolff’s semifields
(u,v) % (x,y) = (ux + voy,uy + ((vox))

where o defines a twisted field.

e Let f be an irreducible polynomial in R, deg(f) = s,
S={g =2 gX €Fq[X;0]:deg(g) <585 = ngy}-
Define g x h:=gh mod ,f(X") for g,h € S. (S,+,x*) is a
twisted cyclic semifield (Sheekey arxiv).

e Hughes-Kleinfeld (1960) semifields and generalized Dickson's
(1965) semifields actually belong to this new construction.

13/35



Twisting approach

xXoc=cx—ac™x?
e Dempwolff’s semifields
(u,v) * (x,y) = (ux + voy,uy +((vox))
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e Let f be an irreducible polynomial in R, deg(f) = s,
S={g = aX €Fg[X;0]: deg(g) <s,gs = ngh}.
Define g x h:=gh mod ,f(X") for g,h € S. (S,+,x*) is a
twisted cyclic semifield (Sheekey arxiv).

e Hughes-Kleinfeld (1960) semifields and generalized Dickson's
(1965) semifields actually belong to this new construction.

e Question: how may non-isotopic twisted cyclic semifields are

there?
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m m 2
X*y:=xy+ <xZTr;(§;y) + yZTr,-(C;x)) .
i=1 i=1

Then (I, +, %) is a presemifield.

e When m = 1, they are Knuth's binary presemifields.

e For almost each different choice of (¢1,---,(m), the
presemifields are non-isotopic.
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permutation on Fg.

Definition (Dembowski and Ostrom 1968)
Let f : Fq — Fq. If for every a # 0, f(x + a) — f(x) defines a
permutation on Iy, then f is a planar function.

e Commutative (pre)semifields (g odd) = Planar functions.

e Planar functions from commutative semifields can always be
written as a Dembowski-Ostrom (DO) polynomial
Z a;jXpl+pj.

o xopy:=xy 4+ xy® with o = pk, f(x) = 2xP* 1, 15/35
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(Conjectured by Dembowksi and Ostrom 1968)

3ki1

e Counter-example: (1997) Coulter-Matthews monomials x 2~
over F3n.

e Other examples? p > 37

e By a planar function f over [F;, one can always define an
affine plane M¢ using D = {(x, f(x)) : x € Fq}.
Points: (x,y) € Fq x Fy
Lines: ¢, =D+ (a,b) ={(x+a,f(x)+ b) : x € Fy},
ta={(a,y) 1y €Fq}.
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Planar functions (g odd)

e When f is a DO+affine polynomial, i.e.
f(x) = ajxP P + 5 cxP', My is a semifield plane.

Coulter-Matthews planar functions define a very special plane
(Lenz-Barlotti I1.1).

In general, l¢ is a semifield plane = f is DO+-affine?

Dembowski and Ostrom gave a criterion (1968).

Dempwolff and Roder investigated the case in which f is a
monomial (2006).

e Partially answered by Coulter and Henderson (2008).
Theorem (Z., 2018)

The plane M¢ is a commutative semifield plane if and only if f is

a DO+affine polynomial.
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Recall that f is planar on Fq if x — f(x +a) — f(x) is a
permutation for every a # 0.

geven,a—b=a+b
If f(xo+a)+f(xo) = b, then f((xo+a)+a)+f(xo+a)=b.
Xp and xg + a are both mapped to b. Not a permutation.

Hence the previous definition of planar functions does not
work for even gq.

However, for every semifield S of order g, there exits a group
(G,-) of order g? and D C G of size q defining a plane Mp:
Points: g € G

Lines: £, = aD for a € G and the cosets of H < G which is of

size q.
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Planar functions (g even)

As there are exponentially many commutative semifields of
even order g (Kantor 2003), there are many planar functions
over [F.

Only one family is known.
No example of order 22, For instance q =28

Question: Are there any non-DO planar polynomials, like the
Coulter-Matthews planar functions for g odd?

Related to a long standing open problem in coding theory.

The plane Iy is a commutative semifield plane if and only if
is a DO+affine polynomial (Z., 2013).

Using algebraic geometry, one can get classification results of
them (Schmidt, Z. 2013, Miiller, Zieve 2015, Bartoli, Schmidt
2019). 20/35
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o L, is Fp-linear, can be viewed as a matrix in F*"
e [, — Ly is invertible for a # b;
e C={L,:acFp} has p" elements. C is an MRD code of
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e [, — Ly is invertible for a # b;
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Equivalence

Definition
Given C; and C, C K™*" they are equivalent if there are
A € GL(m,K), B € GL(n,K), C € K™*" and v € Aut(K) such
that
Co, ={AX"B+ C: X € (1},

where X7 := (x;).

e (A B, C,~) is an isometry over K"™*".
e When m = n, every isometry is
AX'B+ Cor AX)TB+C.

e If C; and C> are linear over K, then we can assume that

Cc=0.
22/35
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MRD Codes

A semifield is just a linear MRD code of minimum distance n in
FQX”, where Fg is one of its nucleus.

How to construct MRD codes of minimum distance d < n?

e Gabidulin codes (k = n — d + 1) (Delsarte 1978), (Gabidulin
1985)

Gr = {aoX +a1X7 +...a, 1 X7 "t ag,a1,. .., 361 € Fgn}.
> For each f € G, f has at most ¥~ roots.
b #G = q"% = ¢"("=9tD) with d = n— k + 1.
e G is MRD.
e One may take o = g* with ged(t, n) =1 and replace q by o.
e More constructions?
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More MRD Codes

There are mainly three approaches:
e Twisting
e Scattered linear sets on a line (k = 2)
e Moore matrices

Besides, there are also two special nonlinear constructions of MRD
codes.

e Durante and Siciliano 2017 generalizing Cossidente, Marino
and Pavese 2016.

e Otal and Ozbudak 2018 (analogue of nearfields).

24/35
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Let o = q* where gcd(t,n) = 1.

Twisted Delsarte-Gabidulin codes (Sheekey, 2016)

(20X + a1 X7 + . a1 XT 42l X7 a4 €Fpl (mod X9 — X).
Note that if n = 0, it is a Delsarte-Gabidulin code.

For even n (Trombetti and Z., 2019)

{aX+aX7+. a1 X7 +nbX? & € Fgr,a,b € F, 2} (mod X9 —X).
(Twisted) cyclic construction (Sheekey, arixv)

{---} mod, f(X") (in Fg[X;]),

where f is irreducible in Fgn[X; o].

25/35
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Scattered linear sets

Fg-linear MRD codes of d = n—1 (i.e. k =2) in Fg*" has to be

in the form
F={aX+bf(X):a,beFg}.

e . a,b S ]Fqn}

{a0X+a1XT +0aX T : a9, a1 € Fgo} = {aX+1/bXT +bx9"
(apply (-)9" ™ and mod X9" — X)

e F is MRD if and only if

e A polynomial f satisfying the condition is called a scattered

polynomial.
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Scattered polynomials

e In finite geometries, a maximum scattered linear set over
PG(1, ¢"):

U={(x,f(x)): x € Fg} CF2,,

L) = )z swe 0\ oh = { (179 ixemy |
#L(U) = qqn__ll.
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Scattered polynomials

e In finite geometries, a maximum scattered linear set over
PG(1, ¢"):

U={(x,f(x)): x € Fg} CF2,,

L) = )z swe 0\ oh = { (179 ixemy |
#L(U) = qqn__ll.

e Hence it is equivalent to

f(x f
oy e,

e Constructions for n = 6,8 (Csajbdk, Marino, Polverino,
Zanella, Zullo).
e Classification results (Bartoli, Z. 2018) (Bartoli, Montanucci

arxiv). 27/35
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Moore matrices

In general, it is quite difficult to tell whether C; and Cy are

equivalent. However, for a very special type, this work is quite easy.
Ch = {20 X9 + a1 X9 + . 4 3 1 X9 a; € Fgn} € Fon[X],

where A = {tp, -+, ty—1}.

Theorem (Csajbdk, Marino, Polverino, Z, submitted)

Let A1 and A, be two k-subsets of {0,...,n— 1}. Define

Cj = {Sien, aiX%: 3 € Fn} for j=1,2. Then Cy and C; are
equivalent if and only if

No=NMN+s:={i+s (modn):iec}
for some s € {0,--- ,n—1}.

28/35



Moore matrices

For A:= (g, ..., ak-1) C an and k < n, a square Moore matrix
is defined as

Qg a1 Qg
ad o af
0 1 k—1
My = .
k—1 k—1 k—1
q q q
o) Qq Q1
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Moore matrices

For A:= (g, ..., ak-1) C an and k < n, a square Moore matrix
is defined as

Qg (S B 0 |
ad ad .. qui
0 1 k—1
My =
k—1 k—1 k—1
q q q
o) Qq B

It is a g-analogue of Vandermonde matrices.

det(Ma) = H(COCVO + crag + - - c_10u—1),
(o}
where ¢ = (cp, ¢1, -+, ck—1) runs over PG(k — 1, q). Therefore,

elements in A are Fg-linearly independent iff det(Mp4) # 0.
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Moore exponent sets

For any set of distinct nonnegative integers | = {to, t1,...,tx_1}

and A = (ao, aq, ..

ak-1) C an, k < nand let

b £ b

q0 q0 q'
Obt a1t ak;l

ql ql q‘l
) o Xy 1
te—1 te—1 te—1

q q q

Qg oy X1
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Moore exponent sets

For any set of distinct nonnegative integers | = {to, t1,...,tx_1}
and A= (ag,1,...,04-1) C an, k < nand let
q'o q' q'
%o, I R S
q'l q'l q
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Mg, =
te—1 te—1 tk—1
q q q
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Besides | = {0,1,---, k — 1}, it is interesting to ask whether there

exist other / sharing the same property.
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Moore exponent sets

For any set of distinct nonnegative integers | = {to, t1,...,tx_1}
and A= (ag,1,...,04-1) C an, k < nand let
q'o q' q'
%o, I R S
o of - all
Ma, 1 = :
te—1 te—1 tk—1
q q q
@9 a1 Qg
Besides | = {0,1,---, k — 1}, it is interesting to ask whether there

exist other / sharing the same property.

Elements in A are F4-linearly independent iff det(Mpa /) # 0.

We call such | a Moore exponent set for g and n.
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A connection with MRD codes

Theorem

For q and n, | = {ty, - ,tx—1} is a Moore exponent set if and
only if

)y o= {aqutO +a X9 .+ ak,qutk*1 :aj € Fgn} CFen[X]

is an MRD code.
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A connection with MRD codes

Theorem

For q and n, | = {ty, - ,tx—1} is a Moore exponent set if and
only if

)y o= {aqutO +a X9 .+ ak,qutk*1 :aj € Fgn} CFen[X]
is an MRD code.

Besides | = {0,1,--- , k — 1}, there are other known examples of
Moore exponent sets.

o | ={0,s,---,(k—1)s} for any n satisfying gcd(s,n) =1
(Generalized Gabidulin codes);

e | ={0,1,3} for n =7 with odd g (Csajbdk, Marino,
Polverino, Z.);

e /| ={0,1,3} for n =8 with g =1 (mod 3) (Csajbdk, Marino,

Polverino, Z.). 31/35



n=7

Theorem

The set | ={0,1,3} is a Moore exponent set if and only if q is
odd.
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n=7

Theorem

The set | ={0,1,3} is a Moore exponent set if and only if q is

odd.

Proof: g even

The Dickson matrix associated with X + X9 + X7

1 1 0 1 0 0 0
0 19 19 0 19 0 0
0 0 1 19 0 19 0
o 0 0 19 19 o 19
19 0 0 0 19 19 0
0 19 0 0 0 19 19

€ Fq7 [X] is
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n=7

Theorem

The set | ={0,1,3} is a Moore exponent set if and only if q is
odd.

Proof: g even
The Dickson matrix associated with X + X9 + X% € F[X] is

1101000
0110100
0011010
00011001
1000110
0100011
1010001

Rank = 4 for g even = g3 roots = / is not an Moore exponent
32/35
set.
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Proof: g odd

Suppose to the contrary that {0, 1,3} is not a Moore exponent set.

e There exists uy, up, u3 which are Fg-linearly independent.

uy uz us

e The rows/columns of M := | uf wuj uj | are [ 7-linearly

3 3 3
q q q
uy Uy U

dependent.
o P:={(u1,un, U3)>[Fq7, o(x1, x2,x3) = (xlq,x;’,x;’).

o P, P, P°” are on a line /.
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Proof: g odd

L4 U(X17X27X3) (X17X27X3) (= <P7 PU7PJ3>Fq7
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o o(x1,x,x3) = (X, x5,x3), £ = (P, P?, P03>]Fq7
o [ # (7, the length of the orbit of £ under o is 7.
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L4 U(X17X27X3) (X17X27X3) (= <P7 PU7PJ3>Fq7

£ = (9, the length of the orbit of ¢ under o is 7.

o P (7 fori= 0,...,6 form a Fano plane.

A Fano plane cannot be embedded in PG(2,q") with g odd.

A contradiction!

Therefore, a1 X + an X9 + a3X"3 cannot have g3 roots.
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An asymptotic classification result

In general it seems illusive to give a complete list of Moore
exponent set, because the associated Dickson matrices are getting

larger.
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An asymptotic classification result

In general it seems illusive to give a complete list of Moore
exponent set, because the associated Dickson matrices are getting

larger.

Conjecture
Assume that / is not an arithmetic progression. Then there exist

integers N Aid/ /Q/#/3 depending on [ such that / is not a Moore
exponent set over Fgn provided that g%/ @ /dpd n > N.

We believe that the restriction on g > @ can be removed.
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Thanks for your attention!
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