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Semifields



Semifields

Definition

A semifield (S,+, ∗) is a non-associative ring whose nonzero

elements form a loop under multiplication.

In other words,

• (S,+) is an abelian group;

• ∗ is both left- and right-distributive over +;

• there is a multiplicative identity;

• for each a and each nonzero b ∈ S, there exist unique x and y

such that b ∗ x = a and y ∗ b = a.

If S does not necessarily have a multiplicative identity, then it is a

presemifield.
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Semifields

• In this talk, we only concern finite semifields.

• |S| is a prime power, and its additive group is elementary

abelian.

• S can be identified as Fm
q .

• When ∗ is commutative, S is called a commutative semifield.

Dickson’s semifield (F2
q,+, ∗) (1906)

Let q be a power of an odd prime p, α a non-square in Fq and

σ ∈ Aut(Fq).

(a, b) + (c, d) := (a + c , b + d),

(a, b) ∗ (c, d) := (ac + α(bd)σ, ad + bc).
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Projective planes

P := (P,L ⊆ 2P) is a projective plane, if

• for P 6= Q ∈ P, ∃ unique ` ∈ L such that P,Q ∈ `;

• for ` 6= m ∈ L, ∃ unique P ∈ P such that P ∈ `,m;

• there exists quadrangle, i.e. four points no three of which

belong to one line.

Given a semifield (S,+, ∗), it coordinatizes a projective plane.

Points: (x , y) ∈ S× S,

(a), (∞).

Lines: `a,b = {(x , a ∗ x + b) : x ∈ S}, `c = {(c, y) : y ∈ S},

`∞ = {(a) : a ∈ S ∪ {∞}}.
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Isotopism

Definition

Given two (pre)semifields (Fm
q ,+, ∗) and (Fm

q ,+, ?).

If there exist

three bijective additive mappings L,M,N : Fm
q → Fm

q such that

M(x) ? N(y) = L(x ∗ y)

for any x , y ∈ Fm
q , then they are isotopic.

Theorem (Albert 1960)

Two (pre)semifields coordinatize isomorphic projective planes if

and only if they are isotopic.
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Isotopism

• Presemifields can be “normalized” to semifields via isotopism.

Given (S,+, ∗) and a 6= 0, a ∗ a is the identity of ◦

(x ∗ a) ◦ (a ∗ y) = x ∗ y .

• Left nucleus:

Nl(S) = { a ∈ S : (a ∗ x) ∗ y = a ∗ (x ∗ y) for all x , y ∈ S }.

• Middle nucleus:

Nm(S) = { a ∈ S : (x ∗ a) ∗ y = x ∗ (a ∗ y) for all x , y ∈ S }.

• Right nucleus:

Nr (S) = { a ∈ S : (x ∗ y) ∗ a = x ∗ (y ∗ a) for all x , y ∈ S }.

• All these nuclei of semifields are invariant under isotopism and

they are all finite fields.
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A long list of known semifields

• Albert’s twisted fields, 1961

• Knuth(1965)’s semifields, containing Dickson(1906)’s semifields and

Hughes-Kleinfeld(1960) semifields

• Ganley commutative semifields, 1981

• Cohen-Ganley commutative semifields, 1982

• Cyclic semifields (Jha and Johnson 1989), generalizing

Sandler(1962)’s semifields

• Kantor(2003) commutative semifields generalizing Knuth(1965)’s

binary semifields.

• Bierbrauer, Budaghyan-Helleseth, Coulter-Matthews-Ding-Yuan,

Lunardon-Marino-Polverino-Trombetti, Zha-Kyureghyan-Wang· · ·
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Conjecture (Kantor,2003)

The number of pairwise non-isotopic semifields of order N is not

bounded above by a polynomial in N.

• For N even, the conjecture is true (Kantor’s commutative

semifields).

• For N odd, the number of known semifields is less than

c
√
N log2(N).

• The number of known commutative semifields of order N is

bounded above by c(logp N)2.
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Cyclic semifields

Let p be a prime.

For each semifield (Fpn ,+, ∗),

x ∗ y =
∑

1≤i ,j<n cijx
pi yp

j
,

for some cij ∈ Fpn .

Definition

A linearized polynomial (q-polynomial) is in Fqn [X ] of the form

a0X + a1X
q + · · ·+ aiX

qi + · · · .

Let L(n,q)[X ] denote all linearized polynomials in Fqn [X ].

• L(n,q)[X ]/(X qn − X ) ∼= EndFq(Fqn) ∼= Fn×n
q .

• axq
i ◦ bxqj = a(bxq

j
)q

i
= abq

i
xq

i+j
= abq

i
xq

i ◦ xqj .
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Cyclic semifields

For σ ∈ Gal(Fqn/Fq), i.e. xσ = xq
i
, let R = Fqn [X ;σ] be a skew

polynomial ring in which Xa = aσX .

• R is a non-commutative integral domain.

• R is both left- and right-Euclidean domain, with the usual

degree function.

• Let f be an irreducible polynomial in R, deg(f ) = s,

S = {g ∈ R : deg(g) ≤ s − 1}. Define g ∗ h := gh

mod r f (X n).

• (S,+, ∗) is a semifield.

• (Fqn [X ; (·)q],+, ·) ∼= (L(n,q)[X ],+, ◦) and take f (X ) = X − 1,

(Fqn [X ; (·)q],+, ·)/(X n − 1) ∼= (L(n,q)[X ],+, ◦)/(X qn − X ).

• For given N = qn, there are at most
√
N log2(N) cyclic

semifields (Kantor,Liebler 2008).
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Twisting approach

Definition

Let σ, τ ∈ Aut(Fq) and a ∈ Fq such that a = xσ−1y τ−1 has no

solution.

Define

x ∗ y = xy − axσy τ .

Then (Fq,+, ∗) is a presemifield, called Albert’s twisted field.

By twisting some other known semifields, people have found more

new semifields.

• Pott-Z. commutative semifields, 2013.

• Dempwolff semifields, 2013.

• Twisted cyclic semifields by Sheekey, arxiv.
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Twisting approach

• By taking τ = σ−1 and a = −1, one has x ◦ y = xy + xσyσ
−1

.

• It is isotopic to x ◦k y := xσy + xyσ where σ = pk (y 7→ yσ).

• (a, b) ∗ (c, d) := (ac + α(bd)σ, ad + bc) (Dickson’s

semifields), where α a non-square.

• (Fq2 ,+, ∗) is a commutative presemifield (Pott, Z. 2013).

• This construction has two parameters k and σ.

• Let q = pm where p is a prime, m = 2eµ with gcd(µ, 2) = 1.

This construction gives exactly bµ2 cd
m
2 e non-isotopic

presemifields.

• It gives us the bound c(logp q)2 of known commutative

semifields.
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Twisting approach

x ◦ y = xy − axσy τ

• Dempwolff’s semifields

(u, v) ∗ (x , y) = (ux + v ◦ y , uy + ζ(v ◦ x))

where ◦ defines a twisted field.

• Let f be an irreducible polynomial in R, deg(f ) = s,

S = {g =
∑

giX
i ∈ Fqn [X ;σ] : deg(g) ≤ s − 1}.

Define g ∗ h := gh mod r f (X n) for g , h ∈ S. (S,+, ∗) is a

cyclic semifield.

• Hughes-Kleinfeld (1960) semifields and generalized Dickson’s

(1965) semifields actually belong to this new construction.

• Question: how may non-isotopic twisted cyclic semifields are

there?
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cyclic semifield.

• Hughes-Kleinfeld (1960) semifields and generalized Dickson’s

(1965) semifields actually belong to this new construction.

• Question: how may non-isotopic twisted cyclic semifields are

there?
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Kantor’s commutative semifields

Given a chain of fields F = F0 ⊃ F1 ⊃ · · · ⊃ Fm of characteristic 2

with [F : Fm] odd and corresponding trace mappings Tri : F→ Fi ,

ζi ∈ F.

x ∗ y := xy +

(
x

m∑
i=1

Tri (ζiy) + y
m∑
i=1

Tri (ζix)

)2

.

Then (F,+, ∗) is a presemifield.

• When m = 1, they are Knuth’s binary presemifields.

• For almost each different choice of (ζ1, · · · , ζm), the

presemifields are non-isotopic.
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Planar Functions



Planar functions (q odd)

• Take a commutative (pre)semifield (Fq,+, ∗), where q is odd.

• Define f : Fq → Fq by f (x) := x ∗ x .

• For every a 6= 0, x 7→ f (x + a)− f (x) = 2a ∗ x + a ∗ a is a

permutation on Fq.

Definition (Dembowski and Ostrom 1968)

Let f : Fq → Fq. If for every a 6= 0, f (x + a)− f (x) defines a

permutation on Fq, then f is a planar function.

• Commutative (pre)semifields (q odd) ⇒ Planar functions.

• Planar functions from commutative semifields can always be

written as a Dembowski-Ostrom (DO) polynomial∑
aijx

pi+pj .

• x ◦k y := xσy + xyσ with σ = pk , f (x) = 2xp
k+1.
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Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• Planar functions ⇒ commutative (pre)semifields?

(Conjectured by Dembowksi and Ostrom 1968)

• Counter-example: (1997) Coulter-Matthews monomials x
3k+1

2

over F3n .

• Other examples? p > 3?

• By a planar function f over Fq, one can always define an

affine plane Πf using D = {(x , f (x)) : x ∈ Fq}.

Points: (x , y) ∈ Fq × Fq

Lines: `a,b = D + (a, b) = {(x + a, f (x) + b) : x ∈ Fq},
`a = {(a, y) : y ∈ Fq}.

16/35



Planar functions (q odd)

• When f is a DO+affine polynomial, i.e.

f (x) =
∑

aijx
pi+pj +

∑
cix

pi , Πf is a semifield plane.

• Coulter-Matthews planar functions define a very special plane

(Lenz-Barlotti II.1).

• In general, Πf is a semifield plane ⇒ f is DO+affine?

• Dembowski and Ostrom gave a criterion (1968).

• Dempwolff and Röder investigated the case in which f is a

monomial (2006).

• Partially answered by Coulter and Henderson (2008).

Theorem (Z., 2018)

The plane Πf is a commutative semifield plane if and only if f is

a DO+affine polynomial.
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Planar functions (q even)

• Recall that f is planar on Fq if x 7→ f (x + a)− f (x) is a

permutation for every a 6= 0.

• q even, a− b = a + b

• If f (x0 + a) + f (x0) = b, then f ((x0 + a) + a) + f (x0 + a) = b.

• x0 and x0 + a are both mapped to b. Not a permutation.

• Hence the previous definition of planar functions does not

work for even q.

• However, for every semifield S of order q, there exits a group

(G , ·) of order q2 and D ⊆ G of size q defining a plane ΠD :

Points: g ∈ G

Lines: `a = aD for a ∈ G and the cosets of H E G which is of

size q.
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Planar functions (q even)

For instance,

• when S is commutative and q is odd,

G = (F2
q,+),

D = {(x , x ∗ x) : x ∈ Fq} and H = {(0, y) : y ∈ Fq};

• when S is commutative and q = 2m, G = Cm
4 ,

H = 2Cm
4
∼= Fm

2 and D = ?

Definition

A function f : F2m → F2m is (modified) planar if

x 7→ f (x + a) + f (x) + xa is a permutation of F2m for each

a ∈ F∗2m .

• Represent Cm
4 as F2m × F2m with the group operation

(x , y) ? (x ′, y ′) = (x + x ′, y + y ′ + x · x ′).
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Planar functions (q even)

• As there are exponentially many commutative semifields of

even order q (Kantor 2003),

there are many planar functions

over Fq.

• Only one family is known.

• No example of order 22k . For instance q = 28.

• Question: Are there any non-DO planar polynomials, like the

Coulter-Matthews planar functions for q odd?

• Related to a long standing open problem in coding theory.

• The plane Πf is a commutative semifield plane if and only if f

is a DO+affine polynomial (Z., 2013).

• Using algebraic geometry, one can get classification results of

them (Schmidt, Z. 2013, Müller, Zieve 2015, Bartoli, Schmidt

2019).
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Maximum Rank-Distance Codes



MRD Codes

Let (Fpn ,+, ∗) be a semifield. Define La : x 7→ x ∗ a.

• La is Fp-linear, can be viewed as a matrix in Fn×n
p

• La − Lb is invertible for a 6= b;

• C = {La : a ∈ Fpn} has pn elements.

C is an MRD code of

minimum distance n in Fn×n
p , and La + Lb = La+b.

Definition

Given C ⊆ Fn×n
q , if

• #C = qnk ,

• for each distinct M,N ∈ C, rank(M − N) ≥ n − k + 1,

then C is a maximum rank-distance (MRD, for short) codes in

Fn×n
q . Its minimum distance d = n − k + 1.
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Equivalence

Definition

Given C1 and C2 ⊆ Km×n, they are equivalent

if there are

A ∈ GL(m,K), B ∈ GL(n,K), C ∈ Km×n and γ ∈ Aut(K) such

that

C2 = {AX γB + C : X ∈ C1},

where X γ := (xγij ).

• (A,B,C , γ) is an isometry over Km×n.

• When m = n, every isometry is

AX γB + C or A(X γ)TB + C .

• If C1 and C2 are linear over K, then we can assume that

C = O.
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MRD Codes

A semifield is just a linear MRD code of minimum distance n in

Fn×n
q , where Fq is one of its nucleus.

How to construct MRD codes of minimum distance d < n?

• Gabidulin codes (k = n − d + 1) (Delsarte 1978), (Gabidulin

1985)

Gk = {a0X + a1X
q + . . . ak−1X

qk−1
: a0, a1, . . . , ak−1 ∈ Fqn}.

. For each f ∈ G, f has at most qk−1 roots.

. #G = qnk = qn(n−d+1) with d = n − k + 1.

• Gk is MRD.

• One may take σ = qt with gcd(t, n) = 1 and replace q by σ.

• More constructions?
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More MRD Codes

There are mainly three approaches:

• Twisting

• Scattered linear sets on a line (k = 2)

• Moore matrices

Besides, there are also two special nonlinear constructions of MRD

codes.

• Durante and Siciliano 2017 generalizing Cossidente, Marino

and Pavese 2016.

• Otal and Özbudak 2018 (analogue of nearfields).
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Twisting

Let σ = qt where gcd(t, n) = 1.

Twisted Delsarte-Gabidulin codes (Sheekey, 2016)

{a0X + a1X
σ + . . . ak−1X

σk−1

+ ηaq
h

0 Xσk

: ai ∈ Fqn} (mod X qn

− X ).

Note that if η = 0, it is a Delsarte-Gabidulin code.

For even n (Trombetti and Z., 2019)

{aX+a1X
σ+. . . ak−1X

σk−1

+ηbXσk

: ai ∈ Fqn , a, b ∈ F∗qn/2} (mod X qn

−X ).

(Twisted) cyclic construction (Sheekey, arixv)

{· · · } mod r f (X n) (in Fqn [X ;σ]),

where f is irreducible in Fqn [X ;σ].
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Scattered linear sets

Fq-linear MRD codes of d = n − 1 (i.e. k = 2) in Fn×n
q has to be

in the form

F = {aX + bf (X ) : a, b ∈ Fqn}.

{a0X+a1X
qs

+ηa0X
q2s

: a0, a1 ∈ Fqn} = {aX+η′bX qs

+bX q(n−1)s

: a, b ∈ Fqn}

(apply (·)q(n−1)s
and mod X qn − X )

• F is MRD if and only if

f (x)

x
=

f (y)

y
⇔ y

x
∈ Fq.

• A polynomial f satisfying the condition is called a scattered

polynomial.
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Scattered polynomials

• In finite geometries, a maximum scattered linear set over

PG(1, qn):

U = {(x , f (x)) : x ∈ Fqn} ⊆ F2
qn ,

L(U) = {〈u〉Fqn
: u ∈ U \ {0}} =

{(
1,

f (x)

x

)
: x ∈ F∗qn

}
,

#L(U) =
qn − 1

q − 1
.

• Hence it is equivalent to
f (x)
x = f (y)

y ⇔
y
x ∈ Fq.

• Constructions for n = 6, 8 (Csajbók, Marino, Polverino,

Zanella, Zullo).

• Classification results (Bartoli, Z. 2018) (Bartoli, Montanucci

arxiv).
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Zanella, Zullo).

• Classification results (Bartoli, Z. 2018) (Bartoli, Montanucci

arxiv).

27/35



Scattered polynomials

• In finite geometries, a maximum scattered linear set over

PG(1, qn):

U = {(x , f (x)) : x ∈ Fqn} ⊆ F2
qn ,

L(U) = {〈u〉Fqn
: u ∈ U \ {0}} =

{(
1,

f (x)

x

)
: x ∈ F∗qn

}
,

#L(U) =
qn − 1

q − 1
.

• Hence it is equivalent to
f (x)
x = f (y)

y ⇔
y
x ∈ Fq.

• Constructions for n = 6, 8 (Csajbók, Marino, Polverino,
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Moore matrices

In general, it is quite difficult to tell whether C1 and C2 are

equivalent.

However, for a very special type, this work is quite easy.

CΛ := {a0X
qt0 + a1X

qt1 + . . .+ ak−1X
qtk−1

: ai ∈ Fqn} ⊆ Fqn [X ],

where Λ = {t0, · · · , tk−1}.

Theorem (Csajbók, Marino, Polverino, Z, submitted)

Let Λ1 and Λ2 be two k-subsets of {0, . . . , n − 1}. Define

Cj =
{∑

i∈Λj
aiX

qi : ai ∈ Fqn

}
for j = 1, 2. Then C1 and C2 are

equivalent if and only if

Λ2 = Λ1 + s := {i + s (mod n) : i ∈ Λ1}

for some s ∈ {0, · · · , n − 1}.
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Moore matrices

For A := (α0, . . . , αk−1) ⊆ Fk
qn and k ≤ n, a square Moore matrix

is defined as

MA :=


α0 α1 · · · αk−1

αq
0 αq

1 · · · αq
k−1

...
...

. . .
...

αqk−1

0 αqk−1

1 · · · αqk−1

k−1

 .

It is a q-analogue of Vandermonde matrices.

det(MA) =
∏

c

(c0α0 + c1α1 + · · · ck−1αk−1),

where c = (c0, c1, · · · , ck−1) runs over PG(k − 1, q). Therefore,

elements in A are Fq-linearly independent iff det(MA) 6= 0.
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Moore exponent sets

For any set of distinct nonnegative integers I = {t0, t1, . . . , tk−1}
and A = (α0, α1, . . . , αk−1) ⊆ Fk

qn , k ≤ n and let

MA, I :=


αqt0

0 αqt0
1 · · · αqt0

k−1

αqt1
0 αqt1

1 · · · αqt1
k−1

...
...

. . .
...

αqtk−1

0 αqtk−1

1 · · · αqtk−1

k−1

 .

Besides I = {0, 1, · · · , k − 1}, it is interesting to ask whether there

exist other I sharing the same property.

Elements in A are Fq-linearly independent iff det(MA,I ) 6= 0.

We call such I a Moore exponent set for q and n.
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A connection with MRD codes

Theorem

For q and n, I = {t0, · · · , tk−1} is a Moore exponent set if and

only if

CI := {a0X
qt0 + a1X

qt1 + . . .+ ak−1X
qtk−1

: ai ∈ Fqn} ⊆ Fqn [X ]

is an MRD code.

Besides I = {0, 1, · · · , k − 1}, there are other known examples of

Moore exponent sets.

• I = {0, s, · · · , (k − 1)s} for any n satisfying gcd(s, n) = 1

(Generalized Gabidulin codes);

• I = {0, 1, 3} for n = 7 with odd q (Csajbók, Marino,

Polverino, Z.);

• I = {0, 1, 3} for n = 8 with q ≡ 1 (mod 3) (Csajbók, Marino,

Polverino, Z.).
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Polverino, Z.).

31/35



A connection with MRD codes

Theorem

For q and n, I = {t0, · · · , tk−1} is a Moore exponent set if and

only if

CI := {a0X
qt0 + a1X

qt1 + . . .+ ak−1X
qtk−1

: ai ∈ Fqn} ⊆ Fqn [X ]

is an MRD code.

Besides I = {0, 1, · · · , k − 1}, there are other known examples of

Moore exponent sets.

• I = {0, s, · · · , (k − 1)s} for any n satisfying gcd(s, n) = 1

(Generalized Gabidulin codes);

• I = {0, 1, 3} for n = 7 with odd q (Csajbók, Marino,
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n = 7

Theorem

The set I = {0, 1, 3} is a Moore exponent set if and only if q is

odd.

Proof: q even

The Dickson matrix associated with X + X q + X q3 ∈ Fq7 [X ] is

1 1 0 1 0 0 0

0 1q 1q 0 1q 0 0

0 0 1q
2

1q
2

0 1q
2

0

0 0 0 1q
3

1q
3

0 1q
3

1q
4

0 0 0 1q
4

1q
4

0

0 1q
5

0 0 0 1q
5

1q
5

1q
6

0 1q
6

0 0 0 1q
6


Rank = 4 for q even ⇒ q3 roots ⇒ I is not an Moore exponent

set.
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Proof: q odd

Suppose to the contrary that {0, 1, 3} is not a Moore exponent set.

• There exists u1, u2, u3 which are Fq-linearly independent.

• The rows/columns of M :=

 u1 u2 u3

uq1 uq2 uq3
uq

3

1 uq
3

2 uq
3

3

 are Fq7-linearly

dependent.

• P := 〈(u1, u2, u3)〉Fq7 , σ(x1, x2, x3) = (xq1 , x
q
2 , x

q
3 ).

• P, Pσ, Pσ
3

are on a line `.
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Proof: q odd

• σ(x1, x2, x3) = (xq1 , x
q
2 , x

q
3 ), ` = 〈P,Pσ,Pσ3〉Fq7 .

• ` 6= `σ, the length of the orbit of ` under σ is 7.

• Pσ
i
, `σ

i
for i = 0, . . . , 6 form a Fano plane.

• A Fano plane cannot be embedded in PG(2, q7) with q odd.

• A contradiction!

• Therefore, α1X + α2X
q + α3X

q3
cannot have q3 roots.
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q + α3X

q3
cannot have q3 roots.
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An asymptotic classification result

In general it seems illusive to give a complete list of Moore

exponent set, because the associated Dickson matrices are getting

larger.

Theorem (Bartoli, Z. Submitted)

Assume that I is not an arithmetic progression. Then there exist

integers N and Q ≤ 5 depending on I such that I is not a Moore

exponent set over Fqn provided that q > Q and n > N.

We believe that the restriction on q > Q can be removed.
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An asymptotic classification result

In general it seems illusive to give a complete list of Moore

exponent set, because the associated Dickson matrices are getting

larger.

Conjecture

Assume that I is not an arithmetic progression. Then there exist

integers N /////and////////Q ≤ 5 depending on I such that I is not a Moore

exponent set over Fqn provided that ////////q > Q/////and n > N.

We believe that the restriction on q > Q can be removed.
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Thanks for your attention!
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