Distributive biracks

Přemysl Jedlička¹, Agata Pilitowska², Anna Zamojska-Dzienio²

¹Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences, ²Faculty of Mathematics and Information Science, Warsaw University of Technology

LOOPS 2019 Budapest

Quandles and racks (Joyce 1982, Matveev 1984) \leftrightarrow (classical) knot theory.

Biquandles and biracks (Fenn, Jordan-Santana, Kauffman 2004) ↔ virtual knot theory (Kauffman 1999).

There is a one-to-one correspondence between biracks and non-degenerate set-theoretical solutions of the Yang-Baxter equation.

Definition (Stanovský 2006)

A structure $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ with four binary operations is called a **birack**, if the following holds for any $x, y, z \in X$:

$$\begin{aligned} x \circ (x \setminus_{\circ} y) &= y = x \setminus_{\circ} (x \circ y), \\ (y/_{\bullet} x) \bullet x &= y = (y \bullet x)/_{\bullet} x, \\ x \circ (y \circ z) &= (x \circ y) \circ ((x \bullet y) \circ z), \\ (x \circ y) \bullet ((x \bullet y) \circ z) &= (x \bullet (y \circ z)) \circ (y \bullet z), \\ (x \bullet y) \bullet z &= (x \bullet (y \circ z)) \bullet (y \bullet z). \end{aligned}$$

In a birack $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$:

left translations: $L_x: X \to X$ by x; $L_x(a) = x \circ a$ and **right translations:** $\mathbf{R}_x: X \to X$ by x; $\mathbf{R}_x(a) = a \bullet x$ are **bijections**.

Three types of multiplication groups:

$$\begin{split} & \operatorname{LMlt}(X) = \langle L_x : \ x \in X \rangle \\ & \operatorname{RMlt}(X) = \langle \mathbf{R}_x : \ x \in X \rangle \\ & \operatorname{Mlt}(X) = \langle L_x, \ \mathbf{R}_x : \ x \in X \rangle \end{split}$$

Let $(X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ be a birack, where for every $x, y, \in X$:

 $x \circ y = y$.

Then $(X, \bullet, /\bullet)$ is a (right) rack.

A rack and a **derived solution** are exactly the same.

・ 「 ト ・ 三 ト ・

A birack $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ is left distributive, if for every $x, y, z \in X$:

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z),$$

and it is **right distributive**, if for every $x, y, z \in X$:

$$(y \bullet z) \bullet x = (y \bullet x) \bullet (z \bullet x).$$

The birack is **distributive** if it is left and right distributive.

Permutational birack (Lyubashenko (Drinfeld 1992)):

 $X \neq \emptyset$, $f, g: X \rightarrow X$ bijections such that fg = gf. Define operations:

$$\begin{aligned} x \circ y &= f(y), \ x \backslash_{\circ} y = f^{-1}(y), \\ x \bullet y &= g(x), \ x /_{\bullet} y = g^{-1}(x). \end{aligned}$$

Then $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ is a permutational birack. If f = g = id, the birack is a projection one.

Derived biracks

 $(X, \circ, \setminus_{\circ})$ left rack. Define operations $\bullet, /_{\bullet} \colon X \times X \to X$ as $x \bullet y = x = x/_{\bullet}y$. Then the structure $B_L(X, \circ, \setminus_{\circ}) = (X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ is a left derived birack.

Symmetrically, $B_R(Y, \bullet, /\bullet)$ is a **right derived birack**.

For a left rack $(X, *, \setminus_*)$ and a right rack $(Y, \triangle, /\triangle)$, the product $\mathbf{B}_L(X, *, \setminus_*) \times \mathbf{B}_R(Y, \triangle, /\triangle)$ is a distributive birack with $\operatorname{Mlt}(X \times Y) \cong \operatorname{LMlt}(X) \times \operatorname{RMlt}(Y)$.

Wada switch

 (G, \cdot, e) a group. Define operations:

$$x \circ y = xy^{-1}x^{-1}, \ x \setminus_{\circ} y = x^{-1}y^{-1}x,$$

 $x \bullet y = xy^{2}, \ x/_{\bullet} y = xy^{-2}.$

The birack $(G, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ known as the Wada switch or Wada biquandle (Fenn et al.).

 $(G, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ is left distributive iff $y^2 \in Z(G)$, for all $y \in G$, and is right distributive iff $x^4 = e$ and $x^2 \in Z(G)$, for all $x \in G$.

Proposition

Let $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ be a structure with four binary operations. Then $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ is a distributive birack if and only if the following conditions are satisfied

(i) (X, ∘, \₀) is a left rack and (X, •, /•) is a right rack,
 (ii) for all x, y, z ∈ X

$$(x \bullet y) \circ z = x \circ z,$$

$$x \bullet (y \circ z) = x \bullet z,$$

$$x \circ (y \bullet z) = (x \circ y) \bullet z$$

Proposition

Let $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ be a distributive birack. Then, for each $x \in X$, the bijections L_x and \mathbf{R}_x are automorphisms of $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$.

Groups LMlt(X), RMlt(X), Mlt(X) are normal subgroups of the automorphism group of a distributive birack $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$.

A birack is **involutive** if it satisfies for every $x, y \in X$:

$$(x \circ y) \circ (x \bullet y) = x \quad \Leftrightarrow \quad x \bullet y = (x \circ y) \backslash_{\circ} x, (x \circ y) \bullet (x \bullet y) = y \quad \Leftrightarrow \quad x \circ y = y/_{\bullet} (x \bullet y).$$

- in involutive biracks, LMlt(X) = RMlt(X) = Mlt(X),
- an involutive birack is left distributive iff it is right distributive,
- involutive distributive biracks correspond to 2-reductive racks (Agata's talk).

 $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ a birack.

Three retraction relations:

They are congruences for a distributive birack.

retract of X: $\operatorname{Ret}(X) = (X/\approx, \circ, \setminus_{\circ}, \bullet, /_{\bullet}).$ iterated retraction: $\operatorname{Ret}^{0}(X) = (X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ and $\operatorname{Ret}^{k}(X) = \operatorname{Ret}(\operatorname{Ret}^{k-1}(X)),$ for any natural number k > 1. A birack is of multipermutation level k, if $|\operatorname{Ret}^{k}(X)| = 1$ and $|\operatorname{Ret}^{k-1}(X)| > 1$.

Gateva-Ivanova 2018: an involutive birack $(X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ is of multipermutation level k if and only if it is left k-permutational.

Let $k \in \mathbb{N}$. A birack $(X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ is:

Q left *k*-permutational, if for every $x, y, x_1, x_2, \ldots, x_k \in X$:

$$(\ldots((x \circ x_1) \circ x_2)\ldots) \circ x_k = (\ldots((y \circ x_1) \circ x_2)\ldots) \circ x_k.$$

Non-involutive distributive biracks

Let $k \in \mathbb{N}$. A birack $(X, \circ, \setminus_{\circ}, \bullet, /_{\bullet})$ is:

0 right *k*-permutational:

$$x_0 \bullet (\ldots (x_{k-2} \bullet (x_{k-1} \bullet x)) \ldots) = x_0 \bullet (\ldots (x_{k-2} \bullet (x_{k-1} \bullet y)) \ldots),$$

eft k-reductive:

$$(\ldots((x_0\circ x_1)\circ x_2)\ldots)\circ x_k=(\ldots((x_1\circ x_2)\circ x_3)\ldots)\circ x_k,$$

o right *k*-reductive:

$$x_0 \bullet (\dots (x_{k-2} \bullet (x_{k-1} \bullet x_k)) \dots) =$$

$$x_0 \bullet (\dots (x_{k-3} \bullet (x_{k-2} \bullet x_{k-1})) \dots).$$

Theorem

Let $(X, \circ, \backslash_{\circ}, \bullet, /_{\bullet})$ be a distributive birack and let $k \ge 2$. Then the following conditions are equivalent:

THANK YOU!

イロト イヨト イヨト イヨト

æ