Generalised transversals of Latin squares

Ian Wanless

Monash University

- [EJC1] I. M. Wanless, A generalisation of transversals for Latin squares, *Electron. J. Combin.*, 9(1) (2002), #R12.
- [EJC2] N. J. Cavenagh and I. M. Wanless, Latin squares with no transversals, *Electron. J. Combin.* 24(2) (2017), #P2.45.

A k-plex in a Latin square of order n is a selection of kn entries, with k in each row and column and k of each symbol.

e.g. A 3-plex in a Latin square of order 6:

```
1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 3 1
5 4 6 2 1 3
6 3 5 1 4 2
```

A k-plex in a Latin square of order n is a selection of kn entries, with k in each row and column and k of each symbol.

e.g. A 3-plex in a Latin square of order 6:

The most famous case, k = 1, is a *transversal*.

A k-plex in a Latin square of order n is a selection of kn entries, with k in each row and column and k of each symbol.

e.g. A 3-plex in a Latin square of order 6:

The most famous case, k = 1, is a *transversal*. The above LS has no transversals.

A k-plex in a Latin square of order n is a selection of kn entries, with k in each row and column and k of each symbol.

e.g. A 3-plex in a Latin square of order 6:

The most famous case, k = 1, is a *transversal*. The above LS has no transversals.

Conjecture: [Ryser] Every LS of odd order has a transversal.

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares.

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

Theorem: [EJC1] For group tables there are only two possibilities. Fither

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

Theorem: [EJC1] For group tables there are only two possibilities. Either

▶ They have a k-plex for all k or

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

Theorem: [EJC1] For group tables there are only two possibilities. Either

- ▶ They have a k-plex for all k or
- ▶ They have k-plexes for all even k but no odd k.

[Subject to the subsequent proof of the Hall-Paige conjecture.]

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

Theorem: [EJC1] For group tables there are only two possibilities. Either

- ▶ They have a k-plex for all k or
- ▶ They have k-plexes for all even k but no odd k.

[Subject to the subsequent proof of the Hall-Paige conjecture.]

Conjecture: [Rodney] Every LS(n) has $\lfloor n/2 \rfloor$ disjoint 2-plexes.

In early statistical literature they studied transversals, duplexes, triplexes, quadruplexes in small Latin squares. In [EJC1] I used the name plex for the general object.

Theorem: [EJC1] For group tables there are only two possibilities. Either

- ▶ They have a k-plex for all k or
- ▶ They have k-plexes for all even k but no odd k.

[Subject to the subsequent proof of the Hall-Paige conjecture.]

Conjecture: [Rodney] Every LS(n) has $\lfloor n/2 \rfloor$ disjoint 2-plexes.

Conjecture: For all even n > 4 there is a LS(n) with a triplex but no transversals.

A protoplex is a partial LS with k filled cells in each row and column, and k occurrences of each symbol $1, 2, \ldots, n$.

$$\left(\begin{array}{cccccc}
\cdot & \cdot & 2 & 3 & \cdot \\
0 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 4 & 2 \\
\cdot & \cdot & 4 & \cdot & 3 \\
1 & 0 & \cdot & \cdot & \cdot
\end{array}\right)$$

A protoplex is a partial LS with k filled cells in each row and column, and k occurrences of each symbol 1, 2, ..., n.

$$\left(\begin{array}{cccccc}
\cdot & \cdot & 2 & 3 & \cdot \\
0 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 4 & 2 \\
\cdot & \cdot & 4 & \cdot & 3 \\
1 & 0 & \cdot & \cdot & \cdot
\end{array}\right)$$

Which protoplexes can be completed to a LS?

A protoplex is a partial LS with k filled cells in each row and column, and k occurrences of each symbol $1, 2, \ldots, n$.

$$\left(\begin{array}{cccccc}
\cdot & \cdot & 2 & 3 & \cdot \\
0 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 4 & 2 \\
\cdot & \cdot & 4 & \cdot & 3 \\
1 & 0 & \cdot & \cdot & \cdot
\end{array}\right)$$

Which protoplexes can be completed to a LS?

Conjecture: [Daykin/Häggkvist '84] If $k \leq \frac{1}{4}n$ every k-protoplex is completable.

A protoplex is a partial LS with k filled cells in each row and column, and k occurrences of each symbol $1, 2, \ldots, n$.

$$\left(\begin{array}{cccccc}
\cdot & \cdot & 2 & 3 & \cdot \\
0 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 4 & 2 \\
\cdot & \cdot & 4 & \cdot & 3 \\
1 & 0 & \cdot & \cdot & \cdot
\end{array}\right)$$

Which protoplexes can be completed to a LS?

Conjecture: [Daykin/Häggkvist '84] If $k \leq \frac{1}{4}n$ every k-protoplex is completable.

Theorem: [EJC1] If true, this is best possible.

A protoplex is a partial LS with k filled cells in each row and column, and k occurrences of each symbol 1, 2, ..., n.

$$\left(\begin{array}{cccccc}
\cdot & \cdot & 2 & 3 & \cdot \\
0 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 4 & 2 \\
\cdot & \cdot & 4 & \cdot & 3 \\
1 & 0 & \cdot & \cdot & \cdot
\end{array}\right)$$

Which protoplexes can be completed to a LS?

Conjecture: [Daykin/Häggkvist '84] If $k \leq \frac{1}{4}n$ every k-protoplex is completable.

Theorem: [EJC1] If true, this is best possible.

Theorem: [Barber/Kühn/Lo/Osthus/Taylor'17] True for $k < (\frac{1}{25} - \epsilon)n$.

A k-plex is *divisible* if it contains a k'-plex for some 0 < k' < k; otherwise it is *indivisible*.

Similar definitions apply for protoplexes.

A k-plex is *divisible* if it contains a k'-plex for some 0 < k' < k; otherwise it is *indivisible*.

Similar definitions apply for protoplexes.

Theorem: [EJC1] For any k and $n \ge k^2$ there is an indivisible k-protoplex of order n.

A k-plex is *divisible* if it contains a k'-plex for some 0 < k' < k; otherwise it is *indivisible*.

Similar definitions apply for protoplexes.

Theorem: [EJC1] For any k and $n \ge k^2$ there is an indivisible k-protoplex of order n.

Theorem: [Bryant et al.'09] For any k and $n \ge 5k$ there is an indivisible k-plex of order n.

A k-plex is *divisible* if it contains a k'-plex for some 0 < k' < k; otherwise it is *indivisible*.

Similar definitions apply for protoplexes.

Theorem: [EJC1] For any k and $n \ge k^2$ there is an indivisible k-protoplex of order n.

Theorem: [Bryant et al.'09] For any k and $n \ge 5k$ there is an indivisible k-plex of order n.

Theorem: [Egan/W.'08] For even n > 2 there exists a LS(n) which has no k-plex for any odd $k < \lfloor n/4 \rfloor$ but does have a k-plex for every other $k \le n/2$.

A k-plex is *divisible* if it contains a k'-plex for some 0 < k' < k; otherwise it is *indivisible*.

Similar definitions apply for protoplexes.

Theorem: [EJC1] For any k and $n \ge k^2$ there is an indivisible k-protoplex of order n.

Theorem: [Bryant et al.'09] For any k and $n \ge 5k$ there is an indivisible k-plex of order n.

Theorem: [Egan/W.'08] For even n > 2 there exists a LS(n) which has no k-plex for any odd $k < \lfloor n/4 \rfloor$ but does have a k-plex for every other $k \le n/2$.

Theorem: [Egan/W.'11] For any proper divisor k of n there is a LS which partitions into *indivisible* k-plexes.

The Δ-Lemma

Define a function Δ from the entries to \mathbb{Z}_n by

$$\Delta(r,c,s)=s-r-c.$$

The Δ -Lemma

Define a function Δ from the entries to \mathbb{Z}_n by

$$\Delta(r,c,s)=s-r-c.$$

Lemma: Let K be a k-plex in a LS of order n.

$$\sum_{(r,c,s)\in K} \Delta(r,c,s) \mod n = \begin{cases} 0 & \text{if k is even or n is odd,} \\ n/2 & \text{if k is odd and n is even.} \end{cases}$$

The Δ-Lemma

Define a function Δ from the entries to \mathbb{Z}_n by

$$\Delta(r,c,s)=s-r-c.$$

Lemma: Let K be a k-plex in a LS of order n.

$$\sum_{(r,c,s)\in K} \Delta(r,c,s) \mod n = \begin{cases} 0 & \text{if } k \text{ is even or } n \text{ is odd,} \\ n/2 & \text{if } k \text{ is odd and } n \text{ is even.} \end{cases}$$

Immediately we see no k-plexes in \mathbb{Z}_n for odd k and even n.

The Δ -Lemma

Define a function Δ from the entries to \mathbb{Z}_n by

$$\Delta(r,c,s)=s-r-c.$$

Lemma: Let K be a k-plex in a LS of order n.

$$\sum_{(r,c,s)\in K} \Delta(r,c,s) \mod n = \begin{cases} 0 & \text{if } k \text{ is even or } n \text{ is odd,} \\ n/2 & \text{if } k \text{ is odd and } n \text{ is even.} \end{cases}$$

Immediately we see no k-plexes in \mathbb{Z}_n for odd k and even n.

In fact, if we replace the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n with *any* other choice of rows, there will still be no transversals.

The Δ-Lemma

Define a function Δ from the entries to \mathbb{Z}_n by

$$\Delta(r,c,s)=s-r-c.$$

Lemma: Let K be a k-plex in a LS of order n.

$$\sum_{(r,c,s)\in K} \Delta(r,c,s) \mod n = \begin{cases} 0 & \text{if } k \text{ is even or } n \text{ is odd,} \\ n/2 & \text{if } k \text{ is odd and } n \text{ is even.} \end{cases}$$

Immediately we see no k-plexes in \mathbb{Z}_n for odd k and even n.

In fact, if we replace the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n with any other choice of rows, there will still be no transversals. This is because the Δ values don't change by much.

Example

Which has these Δ values:

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Every choice can be completed to a LS,

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Every choice can be completed to a LS, which will have no transversals.

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Every choice can be completed to a LS, which will have no transversals.

Theorem: For even $n \to \infty$, there are at least $n^{n^{3/2}(1/2-o(1))}$ species of transversal-free latin squares of order n.

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Every choice can be completed to a LS, which will have no transversals.

Theorem: For even $n \to \infty$, there are at least $n^{n^{3/2}(1/2-o(1))}$ species of transversal-free latin squares of order n.

Still none of odd order though.

Remove the last $\lfloor \sqrt{n} \rfloor$ rows of \mathbb{Z}_n .

Put one row back at a time. Standard bounds on the permanent estimate the number of ways to add a new row.

Every choice can be completed to a LS, which will have no transversals.

Theorem: For even $n \to \infty$, there are at least $n^{n^{3/2}(1/2-o(1))}$ species of transversal-free latin squares of order n.

Still none of odd order though.

Theorem: For all even n > 4 there is a LS of order n that contains a 3-plex but no transversal.

The main idea

 Z_{12} contains these entries:

0	1	2	3	4							
					6	7	8				
								10	11	0	
											2
4	5	6									
			8	9	10						
	7					0	1				
		9					2	3			
			11					4	5		
				1					6	7	
					3					8	9
11						5					10

We have 3 per column and 3 of each symbol.

The main idea

 Z_{12} contains these entries:

0	1	2	3	4							
					6	7	8				
								10	11	0	
											2
4	5	6									
			8	9	10						
	7					0	1				
		9					2	3			
			11					4	5		
				1					6	7	
					3					8	9
11						5					10

We have 3 per column and 3 of each symbol.

▶ We still can't prove that every LS is divisible!

▶ We still can't prove that every LS is divisible! (Beware: [Egan'11] has shown that for all n > 3 there are LS(n) that split into two indivisible plexes.)

- ▶ We still can't prove that every LS is divisible! (Beware: [Egan'11] has shown that for all *n* > 3 there are LS(*n*) that split into two indivisible plexes.)
- Are there LS that have an a-plex and a c-plex but no b-plex for odd a < b < c?</p>

- ▶ We still can't prove that every LS is divisible! (Beware: [Egan'11] has shown that for all *n* > 3 there are LS(*n*) that split into two indivisible plexes.)
- ► Are there LS that have an a-plex and a c-plex but no b-plex for odd a < b < c?</p>

Conjecture: For each odd k there exists N such that for all even $n \ge N$ there exists a latin square of order n that contains a k-plex but no k'-plex for odd k' < k.