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The most famous case, kK = 1, is a transversal.
The above LS has no transversals.

Conjecture: [Ryser] Every LS of odd order has a transversal.
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Origin of the name

In early statistical literature they studied transversals, duplexes, triplexes,
quadruplexes in small Latin squares. In [EJC1] | used the name plex for
the general object.

Theorem: [EJC1] For group tables there are only two possibilities.
Either

» They have a k-plex for all k or
» They have k-plexes for all even k but no odd k.

[Subject to the subsequent proof of the Hall-Paige conjecture.]
Conjecture: [Rodney] Every LS(n) has |n/2] disjoint 2-plexes.

Conjecture: For all even n > 4 there is a LS(n) with a triplex but no
transversals.
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Protoplexes

A protoplex is a partial LS with k filled cells in each row and column,
and k occurrences of each symbol 1,2,... n.
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Which protoplexes can be completed to a LS?

Conjecture: [Daykin/Haggkvist '84] If k <
completable.

%n every k-protoplex is

Theorem: [EJC1] If true, this is best possible.

Theorem: [Barber/Kiihn/Lo/Osthus/Taylor'17] True for
k< (35 —e€)n.
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Indivisible plexes

A k-plex is divisible if it contains a k’-plex for some 0 < k' < k;
otherwise it is indivisible.
Similar definitions apply for protoplexes.

Theorem: [EJC1] For any k and n > k2 there is an indivisible
k-protoplex of order n.

Theorem: [Bryant et al.’09] For any k and n > 5k there is an
indivisible k-plex of order n.

Theorem: [Egan/W.'08] For even n > 2 there exists a LS(n) which
has no k-plex for any odd k < |n/4] but does have a k-plex for every
other k < n/2.

Theorem: [Egan/W.'11] For any proper divisor k of n there is a LS
which partitions into indivisible k-plexes.
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Define a function A from the entries to Z, by
A(r,c,s)=s—r—c.
Lemma: Let K be a k-plex in a LS of order n.

Z A(r,c,s) mod n=

{0 if k is even or n is odd,
(r,c,5)eK

n/2 if k is odd and n is even.

Immediately we see no k-plexes in Z, for odd k and even n.

In fact, if we replace the last [/n] rows of Z, with any other choice of
rows, there will still be no transversals. This is because the A values
don’t change by much.



[0 1 2 3 45 6 77

12345670

2 3456701

3456 7012

4 56 70123

Which has these A values:

-1 -1 -2 -1 -1

-2
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Many LS have no transversals

Remove the last |\/n] rows of Z,.

Put one row back at a time. Standard bounds on the permanent
estimate the number of ways to add a new row.

Every choice can be completed to a LS, which will have no transversals.

Theorem: For even n — oo, there are at least pn*/2(1/2—0(1)) species of

transversal-free latin squares of order n.

J\
Still none of odd order though. (@ &
&/

Theorem: For all even n > 4 there is a LS of order n that contains a
3-plex but no transversal.
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2
4 1516
8 19|10
7 0|1
9 2|3
11 415
1 6 |7
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Z1» contains these entries:

— HH b

10110

"Nl Nl NN EE

11 45

11 5 10

We have 3 per column and 3 of each symbol.
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The main open questions

> We still can't prove that every LS is divisible! (Beware: [Egan'11]
has shown that for all n > 3 there are LS(n) that split into two
indivisible plexes.)

> Are there LS that have an a-plex and a c-plex but no b-plex for odd
a<b<c?

Conjecture: For each odd k there exists N such that for all even

n > N there exists a latin square of order n that contains a k-plex but no
k’-plex for odd k' < k.



