Counting Words in Free Quasigroups

Stefanie G. Wang

Smith College Department of Mathematics

> Loops 2019 July 9, 2019

Overview

Background on quasigroup words and rooted trees

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Quasigroup conjugates and nodal equivalence
- s-peri-Catalan numbers
- The closed formula for P_n^s
- Asymptotics for P_n^s

Quasigroup Conjugates

In an equational quasigroup $(Q, \cdot, /, \backslash)$, we have the *opposite* operations:

$$x \circ y = y \cdot x$$
, $x//y = y/x$, $x \setminus y = y \setminus x$. (1)

Basic and opposite operations yield the following combinatorial quasigroups known as *conjugates* or *parastrophes*:

$$(Q, \cdot), (Q, /), (Q, \backslash), (Q, \circ), (Q, //), (Q, \backslash\rangle)$$
 (2)

The identities (IR) in (Q, \setminus) and (IL) in (Q, /) yield the respective identities

(DL)
$$x/(y \setminus x) = y$$
,
(DR) $y = (x/y) \setminus x$

Basic parsing trees

In the free quasigroup on an alphabet $\{a_1, a_2, \ldots, a_s\}$, (basic) quasigroup words are repeated concatenations of the generators under the three basic quasigroup operations $\cdot, /, \setminus$. A basic parsing tree T_w , defined recursively as follows:

(a) For $1 \le i \le s$, the tree T_{a_i} is a single vertex annotated by a_i ; (b) For basic words u, v, the tree $T_{u \cdot v}$ has:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(i) a root annotated by the multiplication,

(ii) T_u as a left child, and T_v as a right child;

(c) For basic words u, v, the tree $T_{u/v}$ has:

(i) a root annotated by the right division,

- (ii) T_u as a left child, and T_v as a right child;
- (d) For basic words u, v, the tree $T_{u \setminus v}$ has:
 - (i) a root annotated by the left division,
 - (ii) T_u as a left child, and T_v as a right child.

Basic parsing trees

Let
$$u = (a_4/a_2) \cdot a_1$$
 and $v = a_3/a_2$.

- ▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

Action of S_3 on quasigroup operations

Writing σ and τ for the respective transpositions (12) and (23), the full set $\{\cdot, \backslash, //, /, \backslash, \circ\}$ of basic and opposite quasigroup operations is construed as the homogeneous space

$$\mu^{S_3} = \{ \mu^{\mathsf{g}} \mid \mathsf{g} \in S_3 \} \tag{3}$$

for a regular right permutation action of the symmetric group S_3 .

$$\begin{bmatrix} x \cdot y = xy \ \mu \end{bmatrix} \iff \begin{bmatrix} x \ y = xy \ \mu^{\tau} \end{bmatrix} \iff \begin{bmatrix} x \ y = xy \ \mu^{\tau} \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} x \ y = xy \ \mu^{\sigma} \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} x \ y = xy \ \mu^{\sigma\tau} \end{bmatrix} \iff \begin{bmatrix} x \ y = xy \ \mu^{\sigma\tau} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Monoid of binary words

Let M be the complete set of all derived binary operations on a quasigroup. A multiplication * is defined on M by

$$xy(\alpha * \beta) = x \, xy\alpha \,\beta \,. \tag{4}$$

The right projection $xy\epsilon = y$ also furnishes a binary operation ϵ .

Lemma

The set M of all derived binary quasigroup operations forms a monoid $(M, *, \epsilon)$ under the multiplication (4), with identity element ϵ .

Proposition

For each element g of S_3 , the binary operation μ^g is a unit of the monoid M, with inverse $\mu^{\tau g}$.

Corollary

The six quasigroup identities (SL), (IL), (SR), (IR), (DL), (DR) all take the form

$$x \, xy \mu^{\tau g} \, \mu^{g} = y \tag{5}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for an element g of S_3 .

- Full quasigroup words on the alphabet $\{a_1,a_2,\ldots,a_s\}$ are repeated concatenations of the generators under the full set
- $\{\cdot, \backslash, //, /, \backslash \! \backslash, \circ\}.$
- (a) For $1 \le i \le s$, the full parsing tree F_{a_i} is a single vertex annotated by a_i ;
- (b) For full parsing trees F_u , F_v and a basic or opposite operation μ^g from the set (3), the tree $F_{uv \mu^g}$ has:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (i) a base annotated by $\mu^{g},$ along with
- (ii) F_u as a left child, and F_v as a right child.

Nodal equivalence

- The basic parsing tree represents a so-called nodal equivalence class F_u of 2ⁿ⁻¹ full parsing trees, sustaining a regular action of a permutation group (S₂)ⁿ⁻¹ known as the nodal group of the basic quasigroup word u.
- At a given node of a full parsing tree with annotating operation μ^g, the non-trivial permutation of the nodal subgroup switches the two children of the node, and changes the node's annotation to μ^{σg}. It fixes the remainder of the tree.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the basic quasigroup word $(a \cdot b)/c$. It determines the nodal equivalence class

$$\{F_{\mathsf{ab}\,\mu\,\mathsf{c}\,\mu^{\sigma\tau\sigma}},F_{\mathsf{ba}\,\mu^{\sigma}\,\mathsf{c}\,\mu^{\sigma\tau\sigma}},F_{\mathsf{c}\,\mathsf{ab}\,\mu\,\mu^{\tau\sigma}},F_{\mathsf{c}\,\mathsf{ba}\,\mu^{\sigma}\,\mu^{\tau\sigma}}\}$$

of full parsing trees, represented by the basic parsing tree $T_{(a\cdot b)/c} = F_{ab\,\mu\,c\,\mu^{\sigma\tau\sigma}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

s-peri-Catalan numbers

Definition

(a) A (basic or full) quasigroup word is *reduced* if it will not reduce further via the quasigroup identities.

(b) A (basic or full) parsing tree representing a quasigroup word is *reduced* if its corresponding quasigroup word is reduced.

Definition

Let *n* and *s* be natural numbers. The *n*-th *s*-peri-Catalan number, denoted P_n^s , gives the number of reduced basic quasigroup words of length *n* in the free quasigroup on an alphabet of *s* letters.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Auxiliary bivariate function

Definition

Let *s*, *a* and *b* be positive integers. The *auxiliary bivariate* $m^{s}(a, b)$ denotes the number of (a + b)-leaf parsing trees representing reduced quasigroup words in *s* arguments, with an *a*-leaf basic parsing tree on the left child, a *b*-leaf basic parsing tree on the right child, and a given (basic or opposite) quasigroup operation at the root vertex.

Auxiliary bivariates and nodal equivalence

- The auxiliary bivariate m^s(a, b) is invariant under any change of the choice of quasigroup operation at the root vertex of an (a + b)-leaf parsing tree of the type considered in Definition 6.
- In particular, m^s(a, b) = m^s(b, a), since the left hand side counting certain trees with μ^g at the root corresponds to the right hand side counting certain trees with the opposite operation μ^{σg} at the root.
- By convention, whenever one of the arguments s, a, b of an auxiliary bivariate is nonpositive, the output of the auxiliary bivariate is zero.

(日)((1))

To construct a length *n* quasigroup word:

- 1. Adjoin a reduced word u of length n k to a reduced word v of length k, and
- 2. take one of the three basic quasigroup operations as the connective.

Then

$$P_n^s = 3\sum_{k=1}^{n-1} m^s (n-k,k) \le 3\sum_{k=1}^{n-1} P_{n-k}^s P_k^s$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

as an upper bound on the *n*-th *s*-peri-Catalan number.

Number of reductions

Proposition

During the assembly of $uv \mu^g$ within the inductive process, cancellation occurs if and only if there is a (necessarily reduced) word v' of length n - 2k such that $v = uv' \mu^{\tau g}$.

Proof.

The unique cancellations available are of the form $u uv' \mu^{\tau g} \mu^{g} = v'$ described in Corollary 3. Since the word $v = uv' \mu^{\tau g}$ is reduced, it follows that the subword v' is also reduced.

Root vertex cancellation

Figure: Root vertex cancellation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Unpacking the auxiliary bivariate

Proposition

Consider $1 < n \in \mathbb{N}$ and $1 \leq k < n$.

(a) The number of cancellations incurred during the inductive process when a word of length k is connected to a word of length n - k by a given operation μ^{g} is $m^{s}(n - 2k, k)$. In particular, no cancellation occurs when n = 2k.

(b) The formula

$$m^{s}(n-k,k) = P^{s}_{n-k}P^{s}_{k} - m^{s}(n-2k,k)$$
(7)

holds.

Euclidean Algorithm notation

For $1 < n \in \mathbb{N}$ and $1 \le k \le n-1$, let $r_{-1}^k = n$ and $r_0^k = k$. Consider the quotients q_l^k and remainders r_l^k for $1 \le l \le L_{k+1}$ as given below, resulting from calls to the Division Algorithm in the computation of gcd(n, k) by the Euclidean Algorithm:

$$r_{-1}^{k} = q_{1}^{k} r_{0}^{k} + r_{1}^{k}, \dots, r_{l-2}^{k} = q_{l}^{k} r_{l-1}^{k} + r_{l}^{k}, \dots,$$
(8)
$$r_{l-1}^{k} = q_{l-1}^{k} r_{l}^{k} + r_{l-1}^{k}.$$
(9)

Here, $r_{L_k+1}^k = 0$ and $gcd(n, k) = r_{L_k}^k$. $\epsilon_0^k = 1$ and $\epsilon_{l+1}^k = \epsilon_l^k + q_{l+1}^k$. (10)

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Lemma

Using the notation $r_{-1}^k = n$, $r_0^k = k$, $r_{-1}^k = q_1^k r_0^k + r_1^k$, and $\epsilon_0^k = 1$, the formula

$$m^{s}(n-k,k) = (-1)^{q_{1}^{k}-1}m^{s}(r_{0}^{k},r_{1}^{k}) + \sum_{j_{0}^{k}=1}^{q_{1}^{k}-1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}}P^{s}_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}P^{s}_{r_{0}^{k}}$$

$$(11)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

holds for $1 < n \in \mathbb{N}$ and $1 \leq k \leq n - 1$.

Proof of Lemma

Proof:

Through induction on *i*, we will show:

$$m^{s}(n-k,k) = (-1)^{i} m^{s} (r_{0}^{k}, r_{-1}^{k} - (i+1)r_{0}^{k}) + \sum_{j_{0}^{k}=1}^{i} (-1)^{\epsilon_{0}^{k} + j_{0}^{k}} P_{r_{-1}^{k} - j_{0}^{k} r_{0}^{k}} P_{r_{0}^{k}}^{s}$$
(12)
for $0 \leq i < q_{1}^{k}$. Note that (12) for $i = q_{1}^{k} - 1$ yields (11). On the other hand, the base of the induction, namely (12) with $i = 0$, is given by $m^{s}(a, b) = m^{s}(b, a)$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Proof cont.

Now suppose that the induction hypothesis (12) holds for $0 \le i < q_1^k - 1$. Then

$$\begin{split} m^{s}(n-k,k) &= (-1)^{i} m^{s} (r_{0}^{k}, r_{-1}^{k} - (i+1)r_{0}^{k}) + \sum_{j_{0}^{k}=1}^{i} (-1)^{c_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \\ &= (-1)^{i} \Big[P_{r_{-1}^{k}-(i+1)r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} - m^{s} (r_{0}^{k}, r_{-1}^{k} - (i+2)r_{0}^{k}) \Big] \\ &+ \sum_{j_{0}^{k}=1}^{i} (-1)^{c_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \\ &= (-1)^{i+1} m^{s} (r_{0}^{k}, r_{-1}^{k} - (i+2)r_{0}^{k}) \\ &+ (-1)^{c_{0}^{k}+(i+1)} P_{r_{-1}^{k}-(i+1)r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} + \sum_{j_{0}^{k}=1}^{i} (-1)^{c_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \\ &= (-1)^{i+1} m^{s} (r_{0}^{k}, r_{-1}^{k} - (i+2)r_{0}^{k}) + \sum_{j_{0}^{k}=1}^{i+1} (-1)^{c_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \end{split}$$

by (7) and $m^{s}(a, b) = m^{s}(b, a)$, as required for the induction step.

Full unpacking of $m^{s}(n-k,k)$

Proposition

Let $1 < n \in \mathbb{N}$ and 1 < k < n. Then $m^{s}(n - k, k)$ is specified by

$$\sum_{j_0^k=1}^{q_1^k-1} (-1)^{\epsilon_0^k+j_0^k} P_{r_{-1}^k-j_0^k r_0^k}^s P_{r_0^k}^s + \sum_{i=1}^{L_k} \sum_{j_i^k=0}^{q_{i+1}^k-1} (-1)^{\epsilon_i^k+j_i^k} P_{r_{i-1}^k-j_i^k r_i^k}^s P_{r_i^k}^s.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof sketch:

Induction basis given by previous lemma. For the induction step, suppose $m^{s}(n-k,k) =$

$$\sum_{j_{0}^{k}=1}^{q_{1}^{k}-1} (-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k}r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} + (-1)^{\epsilon_{l+1}^{k}} m^{s}(r_{l}^{k}, r_{l+1}^{k})$$
(13)
+
$$\sum_{i=1}^{l} \sum_{j_{i}^{k}=0}^{q_{i+1}^{k}-1} (-1)^{\epsilon_{i}^{k}+j_{i}^{k}} P_{r_{i-1}^{k}-j_{i}^{k}r_{i}^{k}}^{s} P_{r_{i}^{k}}^{s}$$
(14)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for $0 < l < L_k$.

The formula for P_n^s

Previously:

$$P_n^s = 3\sum_{k=1}^{n-1} m^s(n-k,k)$$

The formula for P_n^s

Previously:

$$P_n^s = 3\sum_{k=1}^{n-1} m^s(n-k,k)$$

Theorem For $1 < n \in \mathbb{N}$, the n-th s-peri-Catalan number P_n^s is given by

$$3\sum_{k=1}^{n-1} \left\{ \sum_{j_0^k=1}^{q_1^k-1} (-1)^{\epsilon_0^k+j_0^k} P_{r_{k-1}^k-j_0^k r_0^k}^s P_{r_0^k}^s + \sum_{i=1}^{L_k} \sum_{j_i^k=0}^{q_{i+1}^k-1} (-1)^{\epsilon_i^k+j_i^k} P_{r_{i-1}^k-j_i^k r_i^k}^s P_{r_i^k}^s \right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

First ten s-peri-Catalan numbers

Table: The first ten peri-Catalan numbers for s = 1, 2, 3.

n	P_n^1	P_n^2	P_n^3
1	1	2	3
2	3	12	27
3	12	120	432
4	87	1,752	9,531
5	666	28,224	233,766
6	5,478	487,464	6,143,094
7	47,322	8,814,312	169,029,666
8	422,145	164,734,560	4,808,015,253
9	3,859,026	3,156,739,080	140,243,036,202
10	35,967,054	61,689,134,928	4,172,008,467,726

Recall, cancellations must have the following format:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerical observations

- For any *n*, *s*, the most cancellations occur when k = 1.
- When adjoining an arbitrary length k reduced word to an arbitrary n - k reduced word, the probability of a cancellation occurring is < 1/P^s_k.
- There are $3^{n-1}s^nC_n$ magma words of length *n* in *s* generators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Growth of magma words and quasigroup words

Conjecture (Asymptotic irrelevance of quasigroup identities) In the large, cancellation resulting from the quasigroup identities has a negligible effect on the asymptotic behavior of the peri-Catalan numbers P_n^s .

We conjecture that

$$\lim_{s \to \infty} \lim_{n \to \infty} \frac{\log P_n^s}{\log C_n + n \log 3s - \log 3} = 1$$
(15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Thank you for your attention!