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Quasigroup Conjugates

In an equational quasigroup (Q,-, /,\), we have the opposite
operations:

xoy=y-x, x/ly=y/x, x\\y=y\x (1)

Basic and opposite operations yield the following combinatorial
quasigroups known as conjugates or parastrophes:

(@), (@), (QN\), (Qo), (Q/) (@\) (2
The identities (IR) in (Q,\) and (IL) in (Q,/) yield the respective

identities
(DL) x/(y\x) =y,
(DR) y = (x/y)\x



Basic parsing trees

In the free quasigroup on an alphabet {a1, as, ..., as}, (basic)
quasigroup words are repeated concatenations of the generators
under the three basic quasigroup operations -, /,\. A basic parsing
tree T,,, defined recursively as follows:

(a) For 1 </ <s, the tree T,, is a single vertex annotated by a;;
(b) For basic words u, v, the tree T,., has:

(i) a root annotated by the multiplication,
(i) T, as a left child, and T, as a right child;

(c) For basic words u, v, the tree T/, has:

(i) a root annotated by the right division,
(i) T, as a left child, and T, as a right child;

(d) For basic words u, v, the tree T, has:

(i) a root annotated by the left division,
(i) T, as a left child, and T, as a right child.



Basic parsing trees

Let u = (as/a2) - a1 and v = a3/ an.

a4 an

a1
as an




Action of S3 on quasigroup operations
Writing o and 7 for the respective transpositions (12) and (23),
the full set {-,\,//,/,\\, o} of basic and opposite quasigroup
operations is construed as the homogeneous space

p> = {18 | g € S3} (3)

for a regular right permutation action of the symmetric group Ss.

x-y=xyp | = | X\y=xyu" | = | x/ly=xyu’’

xoy=xyp’ | = | xX\y=xyp’" | = | x/y=xyp’’




Monoid of binary words

Let M be the complete set of all derived binary operations on a
quasigroup. A multiplication * is defined on M by

xy(ax*B)=xxyaf. (4)

The right projection xye = y also furnishes a binary operation .

Lemma

The set M of all derived binary quasigroup operations forms a
monoid (M, x, €) under the multiplication (4), with identity
element e.



Proposition

For each element g of S3, the binary operation u8 is a unit of the
monoid M, with inverse ;i7§.

Corollary

The six quasigroup identities (SL), (IL), (SR), (IR), (DL), (DR) all
take the form

xxyp'® p& =y (5)

for an element g of S3.



Full parsing trees

Full quasigroup words on the alphabet {a1, a2, ..., as} are repeated

concatenations of the generators under the full set

{'7 \7 //7 /7 \\7 o}.

(a) For 1 < i <s, the full parsing tree F;, is a single vertex
annotated by aj;

(b) For full parsing trees F,, F, and a basic or opposite operation
p& from the set (3), the tree Fy, ¢ has:

(i) a base annotated by £, along with
(i) F, as a left child, and F, as a right child.



Nodal equivalence

» The basic parsing tree represents a so-called nodal equivalence
class F, of 2771 full parsing trees, sustaining a regular action
of a permutation group (S2)"~! known as the nodal group of
the basic quasigroup word u.

> At a given node of a full parsing tree with annotating
operation u8, the non-trivial permutation of the nodal
subgroup switches the two children of the node, and changes
the node’s annotation to p?&. It fixes the remainder of the
tree.



Nodal equivalence example

Consider the basic quasigroup word (a- b)/c. It determines the
nodal equivalence class

{Fab,uC/,L‘”Uy Fba,u"c,u‘”‘ﬂ cabpupm, cba,u",u“’}

of full parsing trees, represented by the basic parsing tree
T(a~b)/c = Fabpcpero-






s-peri-Catalan numbers

Definition
(a) A (basic or full) quasigroup word is reduced if it will not reduce
further via the quasigroup identities.

(b) A (basic or full) parsing tree representing a quasigroup word is
reduced if its corresponding quasigroup word is reduced.

Definition

Let n and s be natural numbers. The n-th s-peri-Catalan number,
denoted P;, gives the number of reduced basic quasigroup words
of length n in the free quasigroup on an alphabet of s letters.



Auxiliary bivariate function

Definition

Let s, a and b be positive integers. The auxiliary bivariate m*(a, b)
denotes the number of (a + b)-leaf parsing trees representing
reduced quasigroup words in s arguments, with an a-leaf basic
parsing tree on the left child, a b-leaf basic parsing tree on the
right child, and a given (basic or opposite) quasigroup operation at
the root vertex.



Auxiliary bivariates and nodal equivalence

» The auxiliary bivariate m*(a, b) is invariant under any change
of the choice of quasigroup operation at the root vertex of an
(a+ b)-leaf parsing tree of the type considered in Definition 6.

» In particular, m*(a, b) = m*(b, a), since the left hand side
counting certain trees with p& at the root corresponds to the
right hand side counting certain trees with the opposite
operation u?¢ at the root.

» By convention, whenever one of the arguments s, a, b of an
auxiliary bivariate is nonpositive, the output of the auxiliary
bivariate is zero.



To construct a length n quasigroup word:

1. Adjoin a reduced word u of length n — k to a reduced word v
of length k, and

2. take one of the three basic quasigroup operations as the
connective.

Then

n—1 n—1
Py =33 m*(n—k.k) <33 Ps_.P; (6)
k=1 k=1

as an upper bound on the n-th s-peri-Catalan number.



Number of reductions

Proposition

During the assembly of uv & within the inductive process,
cancellation occurs if and only if there is a (necessarily reduced)
word v/ of length n — 2k such that v = uv' u™¢.

Proof.

The unique cancellations available are of the form v uv'u™8 ;& = v/
described in Corollary 3. Since the word v = uv’ 178 is reduced, it
follows that the subword v/ is also reduced. 0J



Root vertex cancellation

length k length n — k
u length k y
u
length n — 2k
p v

Figure: Root vertex cancellation



Unpacking the auxiliary bivariate

Proposition
Considerl1 <neNand1l<k<n.

(a) The number of cancellations incurred during the inductive
process when a word of length k is connected to a word of
length n — k by a given operation u8 is m*(n — 2k, k). In
particular, no cancellation occurs when n = 2k.

(b) The formula

m°(n— k, k) = P;_, P, — m*(n— 2k, k) (7)

holds.



Euclidean Algorithm notation

Forl<neNand1 < k<n-1, Ietrflznand ré‘:k.
Consider the quotients q,k and remainders r,k for 1 </ < Lgyq as
given below, resulting from calls to the Division Algorithm in the
computation of ged(n, k) by the Euclidean Algorithm:

k ko k |  k k k  k k
rry=aqifg + 1, 2=q g+, .., (8)

Kk k K
M—1 =941, T 41 - (9)

Here, r[‘kH =0 and gcd(n, k) = rfk.

=1 and ey =+l (10)



Lemma
Using the notation rk
the formula

1:n' ré(:k, rflzq{(ré(+rll(, andeé:l,

g -1
me(n — k, k) = (=1)% me(rf, i) + ;1( DEHBBL s P
Jo—
(11)

holds forl<neNand1 < k<n-1.



Proof of Lemma

Proof:
Through induction on i, we will show:
1
m*®(n—k, k) = (—1)’m5(ré‘, rfl—(i+1)ré‘)+z(_1)6'5+J$‘Pr551_jérgPrsok
jg=1
(12)
for 0 < i < gk. Note that (12) for i = gf — 1 yields (11). On the
other hand, the base of the induction, namely (12) with i =0, is
given by m*(a, b) = m*(b, a).



Proof cont.

Now suppose that the induction hypothesis (12) holds for
0<i<qgf—1. Then

: i ko k
m*(n — k, k) = (=1)m (i 75y — (D)) + > (~1)0H0 PY kP
Iy ~170% "0
Jo=t
—(_1\[ps s s(k ko (- k
=(-1) [Prilf(i+1)ré‘ P'é( m ('O sy — (i 4+ 2)rg )]

1
=1
= (71)"+1m5(ré<7 ril —(i+ 2)ré<)
K (i+1) : +
eq+(i s S €0ty ps s
+(=1) PRk sk P kZ( DOTOP Pk
k=1
i+1 kK K & Ky
= ()" (g, g = (4 2)g) + DO (DO P
k1 -1 0

by (7) and m*(a, b) = m*(b, a), as required for the induction
step. L]



Full unpacking of m*(n — k, k)

Proposition
Let1 <neNandl< k< n. Then m*(n— k, k) is specified by

q]_ _1 l+1

Z( 160“0/35 kkPk+Z Z k+J,Pk1 kP

1
Jo— ’1j_0



Proof sketch:

Induction basis given by previous lemma. For the induction step,

suppose m*(n — k, k) =

K
;-1
ek+jk ps s ek s(, .k k

> (SR e P+ (21T m(rf i)
je=1

/ q;<+1_1

ko ik

+ E (1) 'Drsk _-krkPrsk

: i1 i

i=1 jk=0

for 0 < | < L.

(13)

(14)



The formula for P;

Previously:

n—1
Ps=3Y m°(n— k,k)
k=1



The formula for P;

Previously:

n—1
Ps=3Y m°(n— k,k)
k=1

Theorem
For 1 < n €N, the n-th s-peri-Catalan number P; is given by

n

ar-1 Lk q:+1 p
€0+j0 s +J
S { T nten e S Catie el

Jk_l =1 Jlk 0



First ten s-peri-Catalan numbers

Table: The first ten peri-Catalan numbers for s = 1,2, 3.

n| P, P P?
1 1 2 3

2 3 12 27

3 12 120 432

4 87 1,752 9,531

5 666 28,224 233,766

6 5,478 487,464 6,143,094

7 47,322 8,814,312 169,029,666
8 422,145 164,734,560 4,808,015,253
9 | 3,859,026 | 3,156,739,080 | 140,243,036,202
10 | 35,967,054 | 61,689,134,928 | 4,172,008,467,726




Recall, cancellations must have the following format:

length k length n — k
u length k y
u
length n — 2k
1 v




Numerical observations

» For any n, s, the most cancellations occur when k = 1.

» When adjoining an arbitrary length k reduced word to an
arbitrary n — k reduced word, the probability of a cancellation
occurring is < 1/P;.

» There are 3""1s"C, magma words of length n in s generators.



Growth of magma words and quasigroup words

Conjecture (Asymptotic irrelevance of quasigroup identities)

In the large, cancellation resulting from the quasigroup identities
has a negligible effect on the asymptotic behavior of the
peri-Catalan numbers P;.

We conjecture that

log P;
lim lim o8

=1 15
s—oo n—oo log C, + nlog3s — log 3 (15)




Figure: Plots of log P5/(log C, 4+ nlog3s — log3) for s = 1,3,6,12.
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Thank you for your attention!
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