Counting Words in Free Quasigroups

Stefanie G. Wang

Smith College
Department of Mathematics

Loops 2019
July 9, 2019

Overview

- Background on quasigroup words and rooted trees
- Quasigroup conjugates and nodal equivalence
- s-peri-Catalan numbers
- The closed formula for P_{n}^{s}
- Asymptotics for P_{n}^{s}

Quasigroup Conjugates

In an equational quasigroup $(Q, \cdot, /, \backslash)$, we have the opposite operations:

$$
\begin{equation*}
x \circ y=y \cdot x, \quad x / / y=y / x, \quad x \backslash \backslash y=y \backslash x \tag{1}
\end{equation*}
$$

Basic and opposite operations yield the following combinatorial quasigroups known as conjugates or parastrophes:

$$
\begin{equation*}
(Q, \cdot), \quad(Q, /), \quad(Q, \backslash), \quad(Q, \circ), \quad(Q, / /), \quad(Q, \backslash \backslash) \tag{2}
\end{equation*}
$$

The identities (IR) in (Q, \backslash) and (IL) in $(\mathrm{Q}, /)$ yield the respective identities
(DL) $x /(y \backslash x)=y$,
(DR) $y=(x / y) \backslash x$

Basic parsing trees

In the free quasigroup on an alphabet $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$, (basic) quasigroup words are repeated concatenations of the generators under the three basic quasigroup operations $\cdot, /, \backslash$. A basic parsing tree T_{w}, defined recursively as follows:
(a) For $1 \leq i \leq s$, the tree $T_{a_{i}}$ is a single vertex annotated by a_{i};
(b) For basic words u, v, the tree $T_{u \cdot v}$ has:
(i) a root annotated by the multiplication,
(ii) T_{u} as a left child, and T_{v} as a right child;
(c) For basic words u, v, the tree $T_{u / v}$ has:
(i) a root annotated by the right division,
(ii) T_{u} as a left child, and T_{v} as a right child;
(d) For basic words u, v, the tree $T_{u \backslash v}$ has:
(i) a root annotated by the left division,
(ii) T_{u} as a left child, and T_{v} as a right child.

Basic parsing trees

Let $u=\left(a_{4} / a_{2}\right) \cdot a_{1}$ and $v=a_{3} / a_{2}$.

T_{u}

T_{v}

$T_{u \cdot v}$

Action of S_{3} on quasigroup operations

Writing σ and τ for the respective transpositions (12) and (23), the full set $\{\cdot, \backslash, / /, /, \backslash \backslash, \circ\}$ of basic and opposite quasigroup operations is construed as the homogeneous space

$$
\begin{equation*}
\mu^{S_{3}}=\left\{\mu^{g} \mid g \in S_{3}\right\} \tag{3}
\end{equation*}
$$

for a regular right permutation action of the symmetric group S_{3}.

Monoid of binary words

Let M be the complete set of all derived binary operations on a quasigroup. A multiplication $*$ is defined on M by

$$
\begin{equation*}
x y(\alpha * \beta)=x x y \alpha \beta \tag{4}
\end{equation*}
$$

The right projection $x y \epsilon=y$ also furnishes a binary operation ϵ.
Lemma
The set M of all derived binary quasigroup operations forms a monoid $(M, *, \epsilon)$ under the multiplication (4), with identity element ϵ.

Proposition

For each element g of S_{3}, the binary operation μ^{g} is a unit of the monoid M, with inverse $\mu^{\tau g}$.

Corollary
The six quasigroup identities (SL), (IL), (SR), (IR), (DL), (DR) all take the form

$$
\begin{equation*}
x \times y \mu^{\tau g} \mu^{g}=y \tag{5}
\end{equation*}
$$

for an element g of S_{3}.

Full parsing trees

Full quasigroup words on the alphabet $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ are repeated concatenations of the generators under the full set $\{\cdot, \backslash, / /, /, \backslash \backslash, \circ\}$.
(a) For $1 \leq i \leq s$, the full parsing tree $F_{a_{i}}$ is a single vertex annotated by a_{i};
(b) For full parsing trees F_{u}, F_{v} and a basic or opposite operation μ^{g} from the set (3), the tree $F_{u v \mu^{g}}$ has:
(i) a base annotated by μ^{g}, along with
(ii) F_{u} as a left child, and F_{v} as a right child.

Nodal equivalence

- The basic parsing tree represents a so-called nodal equivalence class \mathbf{F}_{u} of 2^{n-1} full parsing trees, sustaining a regular action of a permutation group $\left(S_{2}\right)^{n-1}$ known as the nodal group of the basic quasigroup word u.
- At a given node of a full parsing tree with annotating operation μ^{g}, the non-trivial permutation of the nodal subgroup switches the two children of the node, and changes the node's annotation to $\mu^{\sigma g}$. It fixes the remainder of the tree.

Nodal equivalence example

Consider the basic quasigroup word $(a \cdot b) / c$. It determines the nodal equivalence class

$$
\left\{F_{a b \mu c \mu^{\sigma \tau \sigma}}, F_{b a \mu^{\sigma} c \mu^{\sigma \tau \sigma}}, F_{c a b \mu \mu^{\tau \sigma}}, F_{c b a \mu^{\sigma} \mu^{\tau \sigma}}\right\}
$$

of full parsing trees, represented by the basic parsing tree $T_{(a \cdot b) / c}=F_{a b \mu c \mu^{\sigma \tau \sigma}}$.

s-peri-Catalan numbers

Definition
(a) A (basic or full) quasigroup word is reduced if it will not reduce further via the quasigroup identities.
(b) A (basic or full) parsing tree representing a quasigroup word is reduced if its corresponding quasigroup word is reduced.

Definition

Let n and s be natural numbers. The n-th s-peri-Catalan number, denoted P_{n}^{s}, gives the number of reduced basic quasigroup words of length n in the free quasigroup on an alphabet of s letters.

Auxiliary bivariate function

Definition

Let s, a and b be positive integers. The auxiliary bivariate $m^{s}(a, b)$ denotes the number of $(a+b)$-leaf parsing trees representing reduced quasigroup words in s arguments, with an a-leaf basic parsing tree on the left child, a b-leaf basic parsing tree on the right child, and a given (basic or opposite) quasigroup operation at the root vertex.

Auxiliary bivariates and nodal equivalence

- The auxiliary bivariate $m^{s}(a, b)$ is invariant under any change of the choice of quasigroup operation at the root vertex of an $(a+b)$-leaf parsing tree of the type considered in Definition 6.
- In particular, $m^{s}(a, b)=m^{s}(b, a)$, since the left hand side counting certain trees with μ^{g} at the root corresponds to the right hand side counting certain trees with the opposite operation $\mu^{\sigma g}$ at the root.
- By convention, whenever one of the arguments s, a, b of an auxiliary bivariate is nonpositive, the output of the auxiliary bivariate is zero.

To construct a length n quasigroup word:

1. Adjoin a reduced word u of length $n-k$ to a reduced word v of length k, and
2. take one of the three basic quasigroup operations as the connective.
Then

$$
\begin{equation*}
P_{n}^{s}=3 \sum_{k=1}^{n-1} m^{s}(n-k, k) \leq 3 \sum_{k=1}^{n-1} P_{n-k}^{s} P_{k}^{s} \tag{6}
\end{equation*}
$$

as an upper bound on the n-th s-peri-Catalan number.

Number of reductions

Proposition

During the assembly of $u v \mu^{g}$ within the inductive process, cancellation occurs if and only if there is a (necessarily reduced) word v^{\prime} of length $n-2 k$ such that $v=u v^{\prime} \mu^{\tau g}$.

Proof.
The unique cancellations available are of the form $u u v^{\prime} \mu^{\tau g} \mu^{g}=v^{\prime}$ described in Corollary 3. Since the word $v=u v^{\prime} \mu^{\tau g}$ is reduced, it follows that the subword v^{\prime} is also reduced.

Root vertex cancellation

length k
length $n-k$

Figure: Root vertex cancellation

Unpacking the auxiliary bivariate

Proposition

Consider $1<n \in \mathbb{N}$ and $1 \leq k<n$.
(a) The number of cancellations incurred during the inductive process when a word of length k is connected to a word of length $n-k$ by a given operation μ^{g} is $m^{s}(n-2 k, k)$. In particular, no cancellation occurs when $n=2 k$.
(b) The formula

$$
\begin{equation*}
m^{s}(n-k, k)=P_{n-k}^{s} P_{k}^{s}-m^{s}(n-2 k, k) \tag{7}
\end{equation*}
$$

holds.

Euclidean Algorithm notation

For $1<n \in \mathbb{N}$ and $1 \leq k \leq n-1$, let $r_{-1}^{k}=n$ and $r_{0}^{k}=k$.
Consider the quotients q_{l}^{k} and remainders r_{l}^{k} for $1 \leq I \leq L_{k+1}$ as given below, resulting from calls to the Division Algorithm in the computation of $\operatorname{gcd}(n, k)$ by the Euclidean Algorithm:

$$
\begin{align*}
r_{-1}^{k} & =q_{1}^{k} r_{0}^{k}+r_{1}^{k}, \ldots, r_{l-2}^{k}=q_{l}^{k} r_{l-1}^{k}+r_{I}^{k}, \ldots, \tag{8}\\
r_{L_{k}-1}^{k} & =q_{L_{k}+1}^{k} r_{L_{k}}^{k}+r_{L_{k}+1}^{k} \tag{9}
\end{align*}
$$

Here, $r_{L_{k}+1}^{k}=0$ and $\operatorname{gcd}(n, k)=r_{L_{k}}^{k}$.

$$
\begin{equation*}
\epsilon_{0}^{k}=1 \quad \text { and } \quad \epsilon_{l+1}^{k}=\epsilon_{l}^{k}+q_{l+1}^{k} . \tag{10}
\end{equation*}
$$

Lemma

Using the notation $r_{-1}^{k}=n, r_{0}^{k}=k, r_{-1}^{k}=q_{1}^{k} r_{0}^{k}+r_{1}^{k}$, and $\epsilon_{0}^{k}=1$, the formula

$$
\begin{equation*}
m^{s}(n-k, k)=(-1)^{q_{1}^{k}-1} m^{s}\left(r_{0}^{k}, r_{1}^{k}\right)+\sum_{j_{0}^{k}=1}^{q_{1}^{k}-1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \tag{11}
\end{equation*}
$$

holds for $1<n \in \mathbb{N}$ and $1 \leq k \leq n-1$.

Proof of Lemma

Proof:

Through induction on i, we will show:

$$
\begin{equation*}
m^{s}(n-k, k)=(-1)^{i} m^{s}\left(r_{0}^{k}, r_{-1}^{k}-(i+1) r_{0}^{k}\right)+\sum_{j_{0}^{k}=1}^{i}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s} \tag{12}
\end{equation*}
$$

for $0 \leq i<q_{1}^{k}$. Note that (12) for $i=q_{1}^{k}-1$ yields (11). On the other hand, the base of the induction, namely (12) with $i=0$, is given by $m^{s}(a, b)=m^{s}(b, a)$.

Proof cont.

Now suppose that the induction hypothesis (12) holds for $0 \leq i<q_{1}^{k}-1$. Then

$$
\begin{aligned}
& m^{s}(n-k, k)=(-1)^{i} m^{s}\left(r_{0}^{k}, r_{-1}^{k}-(i+1) r_{0}^{k}\right)+\sum_{j_{0}^{k}=1}^{i}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}} P_{r_{0}^{s}}^{s} \\
& =(-1)^{i}\left[P_{r_{-1}^{k}-(i+1) r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s}-m^{s}\left(r_{0}^{k}, r_{-1}^{k}-(i+2) r_{0}^{k}\right)\right] \\
& +\sum_{j_{0}^{k}=1}^{i}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{r}} P_{r_{0}^{k}}^{s} \\
& =(-1)^{i+1} m^{s}\left(r_{0}^{k}, r_{-1}^{k}-(i+2) r_{0}^{k}\right) \\
& +(-1)^{\epsilon_{0}^{k}+(i+1)} P_{r_{-1}^{k}-(i+1) r_{0}^{s}} P_{r_{0}^{k}}^{s}+\sum_{j_{0}^{k}=1}^{i}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}} P_{r_{0}^{k}}^{s} \\
& =(-1)^{i+1} m^{s}\left(r_{0}^{k}, r_{-1}^{k}-(i+2) r_{0}^{k}\right)+\sum_{j_{0}^{k}=1}^{i+1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}} P_{r_{0}^{k}}^{s}
\end{aligned}
$$

by (7) and $m^{s}(a, b)=m^{s}(b, a)$, as required for the induction step.

Full unpacking of $m^{s}(n-k, k)$

Proposition

Let $1<n \in \mathbb{N}$ and $1<k<n$. Then $m^{s}(n-k, k)$ is specified by

$$
\sum_{j_{0}^{k}=1}^{q_{1}^{k}-1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}} P_{r_{0}^{k}}^{s}+\sum_{i=1}^{L_{k}} \sum_{j_{i}^{k}=0}^{q_{i+1}^{k}-1}(-1)^{\epsilon_{i}^{k}+j_{i}^{k}} P_{r_{i-1}^{k}-j_{i}^{k} r_{i}^{k}} P_{r_{i}^{k}}^{s}
$$

Proof sketch:

Induction basis given by previous lemma. For the induction step, suppose $m^{s}(n-k, k)=$

$$
\begin{align*}
& \sum_{j_{0}^{k}=1}^{q_{1}^{k}-1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}} P_{r_{0}^{k}}^{s}+(-1)^{\epsilon_{1+1}^{k}} m^{s}\left(r_{l}^{k}, r_{l+1}^{k}\right) \\
& +\sum_{i=1}^{\prime} \sum_{j_{i}^{k}=0}^{q_{i+1}^{k}-1}(-1)^{\epsilon_{i}^{k}+j_{i}^{k}} P_{r_{i-1}^{k}-j_{i}^{k} r_{i}^{k}}^{s} P_{r_{i}^{k}}^{s} \tag{13}
\end{align*}
$$

for $0<1<L_{k}$.

The formula for P_{n}^{s}

Previously:

$$
P_{n}^{s}=3 \sum_{k=1}^{n-1} m^{s}(n-k, k)
$$

The formula for P_{n}^{s}

Previously:

$$
P_{n}^{s}=3 \sum_{k=1}^{n-1} m^{s}(n-k, k)
$$

Theorem
For $1<n \in \mathbb{N}$, the n-th s-peri-Catalan number P_{n}^{s} is given by
$3 \sum_{k=1}^{n-1}\left\{\sum_{j_{0}^{k}=1}^{q_{1}^{k}-1}(-1)^{\epsilon_{0}^{k}+j_{0}^{k}} P_{r_{-1}^{k}-j_{0}^{k} r_{0}^{k}}^{s} P_{r_{0}^{k}}^{s}+\sum_{i=1}^{L_{k}} \sum_{j_{i}^{k}=0}^{q_{i+1}^{k}-1}(-1)^{\epsilon_{i}^{k}+j_{i}^{k}} P_{r_{i-1}^{k}-j_{i}^{k} r_{i}^{k}}^{s} P_{r_{i}^{k}}^{s}\right\}$.

First ten s-peri-Catalan numbers

Table: The first ten peri-Catalan numbers for $s=1,2,3$.

n	P_{n}^{1}	P_{n}^{2}	P_{n}^{3}
1	1	2	3
2	3	12	27
3	12	120	432
4	87	1,752	9,531
5	666	28,224	233,766
6	5,478	487,464	$6,143,094$
7	47,322	$8,814,312$	$169,029,666$
8	422,145	$164,734,560$	$4,808,015,253$
9	$3,859,026$	$3,156,739,080$	$140,243,036,202$
10	$35,967,054$	$61,689,134,928$	$4,172,008,467,726$

Recall, cancellations must have the following format:
length k

length $n-k$

Numerical observations

- For any n, s, the most cancellations occur when $k=1$.
- When adjoining an arbitrary length k reduced word to an arbitrary $n-k$ reduced word, the probability of a cancellation occurring is $<1 / P_{k}^{s}$.
- There are $3^{n-1} s^{n} C_{n}$ magma words of length n in s generators.

Growth of magma words and quasigroup words

Conjecture (Asymptotic irrelevance of quasigroup identities)

In the large, cancellation resulting from the quasigroup identities has a negligible effect on the asymptotic behavior of the peri-Catalan numbers P_{n}^{s}.
We conjecture that

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\log P_{n}^{s}}{\log C_{n}+n \log 3 s-\log 3}=1 \tag{15}
\end{equation*}
$$

Figure: Plots of $\log P_{n}^{s} /\left(\log C_{n}+n \log 3 s-\log 3\right)$ for $s=1,3,6,12$.

Thank you for your attention!

