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Outline

1. The quantum Yang-Baxter equation

2. Left distributive quasigroups / latin quandles
(some new results since Loops'15)

3. Involutive quasigroup solutions / latin rumples
[ Bonatto, Kinyon, S, Vojt&chovsky, 2019 |

4. |dempotent quasigroup solutions / latin ?77les
(open problem)
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The quantum Yang-Baxter equation
Consider

@ a monoidal category C

@ an object X in C

0 X®X—=>X®X
Think about (Set,x) and (Vect,®).

The quantum Yang-Baxter equation for o:

(caN(leo)cxl)=(®0c)(cx)(l® o)
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The quantum Yang-Baxter equation
Consider

@ a monoidal category C
@ an object X in C
0 X®X—=>X®X
Think about (Set,x) and (Vect,®).

The quantum Yang-Baxter equation for o:

(ca(l®o)(cxl)=(l®0c)(c )| ® o)

@ (Vect) matrix representation of braid groups
o (Vect) quantum physics
@ (Set) knot invariants

Set is a special case of Vect: permutation matrices
Set to Vect: by linearization and deformation
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Set-theoretical solutions of the Yang-Baxter equation
[Drinfeld 1990]

Let X beasetand o : X x X — X x X a mapping, denote
o(x,y) = (x*y,xoy).

Hence, we have an algebra (X, *,0).

The set-theoretical quantum Yang-Baxter equation

(o x id)(id x o)(o x id) = (id x o)(o x id)(id x o)
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Set-theoretical solutions of the Yang-Baxter equation
[Drinfeld 1990]

Let X beasetand o : X x X — X x X a mapping, denote
o(x,y) = (x*y,xoy).

Hence, we have an algebra (X, *,0).

The set-theoretical quantum Yang-Baxter equation
(o x id)(id x o)(o x id) = (id x o)(o x id)(id x o)

is equivalent to three identities:
x#(yxz)=(x*xy)x((xoy)x2z)
(zoy)ox=(zo(y*x))o(yox)
(xxy)o((xoy)xz)=(xo(y*2z))*(yoz)
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Examples
o(x,y) = (xxy,xoy) such that

x*(yxz)=(xxy)*((xoy)*2)
(zoy)ox=(zo(y*x))o(yox)
(x*xy)o((xoy)xz)=(xo(yx2))*(yoz)

a(x,y) = (¥,x)

o(x,y) = (xxy,1) ... YBE = associativity of * ... monoids

o(x,y) = (x*y,x) ... YBE = left self-distributivity ... racks and quandles
o(x,y) =(xVy,x Ay)on a lattice ... always satisfies YBE
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Examples

o(x,y) = (x* y,x oy) such that
x#(yxz)=(xxy)*((xoy)*z)

(zoy)ox=(zo(y*x))o(yox)
(x*xy)o((xoy)xz)=(xo(yx2))*(yoz)

a(x,y) = (¥,x)

o(x,y) = (xxy,1) ... YBE = associativity of * ... monoids

o(x,y) = (x*y,x) ... YBE = left self-distributivity ... racks and quandles
o(x,y) =(xVy,x Ay)on a lattice ... always satisfies YBE

Mostly interested in non-degenerate solutions:
x is a left quasigroup, o is a right quasigroup
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Knot coloring

[Kauffman? early 2000s7?]

Consider a set of colors C and a quaternary relation R C C*.
To every semi-arc, assign one of the colors from C.
For every crossing, demand
(col(a), col(b), col(c), col(d)) € R
?7 Invariant 77: count the number of admissible colorings
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Knot coloring (example)

C=1{0,1,2,3,4}, R={(a,b,b,c):a+b=c (mod5)}




Knot coloring

Coloring by (C, R) is an invariant for knot/link equivalence if and only if
R is a graph of an algebra (C,*,0) such that it is

Il a solution of the Yang-Baxter equation,

Il non-degenerate, o bijective,

| there is a permutation t on C s.t. t(a)*a = a and ao t(a) = t(a).

v
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Interesting classes of solutions of YBE

@ racks and quandles: non-degenerate and o(x,y) = (x * y,x)
e involutive solutions: non-degenerate and o2 = idx x

e idempotent solutions: non-degenerate and 02 = o

In all cases, o is uniquely determined by x.
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Interesting classes of solutions of YBE

@ racks and quandles: non-degenerate and o(x,y) = (x * y,x)
e involutive solutions: non-degenerate and o2 = idx x

e idempotent solutions: non-degenerate and 02 = o

In all cases, o is uniquely determined by x.

After a boring calculation (replacing « for \, etc.), these are
term-equivalent to a variety of left quasigroups axiomatized by a single
identity:

@ racks and quandles:  (x xy)* (x x z) = x * (y * z) [obvious]

@ involutive solutions:  (x*y)* (x*z) = (y *x) * (y * z) [Rump]

e idempotent solutions: (x xy)* (x*z) = (y*y)x*(y*z)

I STTSEEEGI Yo Baxter quesigoups e



Yang-Baxter quasigroups

Definition

A quasigroup (Q, x) is called Yang-Baxter quasigroup, if (Q,\,0) is a
solution to YBE, for some operation o.

Examples:

@ latin quandles = left distributive quasigroups:
(x*xy)*(x*x2z)=xx(yx*2z)
extensively studied since 1950s (Stein, Belousov&co., Galkin, ...)
[DS, A guide to self-distributive quasigroups, or latin quandles, 2015]

@ involutive solutions:  (x*y)* (x*z) = (y*x)*(y*z)
[Bonatto, Kinyon, DS, Vojtéchovsky, 2019]

e idempotent solutions: (x*y)x(x*z) = (y*y)x*(y*2)
to do

Problem: other interesting classes?
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Intermezzo: definitions

Left multiplication group: LMIt(Q) = (L, : a € Q)
Displacement group: Dis(Q) = (LE,LE1 s a,be Q)

algebraically connected means LMIt(Q) transitive on Q
(quasigroups are algebraically connected)
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Intermezzo: definitions

Left multiplication group: LMIt(Q) = (L, : a € Q)
Displacement group: Dis(Q) = (LE,LE1 s a,be Q)

algebraically connected means LMIt(Q) transitive on Q
(quasigroups are algebraically connected)

Affine quasigroups: A an abelian group, ¢, € Aut(A), c € A

Aff(A, @, 1, c) = (A, %)
x#y =@(x)+(y)+c
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Outline

1. The quantum Yang-Baxter equation
2. Left distributive quasigroups / latin quandles
3. Involutive quasigroup solutions / latin rumples

4. Idempotent quasigroup solutions / latin 777les
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Left distributive quasigroups / latin quandles
(x*xy)*(x*xz)=xx(yx*2z)

i.e., LMIt(Q) < Aut(Q)
(hence latin quandles are homogeneous, unlike other YB quasigroups)

Examples:
@ point reflection in euclidean geometry
e affine quasigroups Aff(A,1 — ¢, p,0),
e (A,2x — y) for any uniquely 2-divisible Bruck loop
° ...

@ embed into conjugation quandles

@ non-affine examples of orders 15, 21, 27, 28, 33, 36, 39, 45, ...

Problem: Determine the existence spectrum of non-affine latin quandles.
[See the lecture by Tomas Nagy.]
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Coset construction

G group, H < G, ¢ € Aut(G) s.t. ¢p(a) =aforallac H ~
O(G, H,v) = (G/H, %) with aH x bH = ay)(a~1b)H

e Q(G, H,v) is a homogeneous quandle

e (in finite case) Q(G, H, %) is a quasigroup iff for every a,u € G
ap(a~l) e HY = a€H.

Every connected quandle Q is isomorphic to Q(G, Ge, —t¢) with
G = LMIt(Q), or G = Dis(Q) (minimal representation).
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Canonical representation

Fix a set @ and an element e.

Quandle envelope = (G, () where G is a transitive group on @ and
¢ € Z(Ge) such that ((¢) = G.

Theorem (Hulpke, S., Vojtéchovsky, 2016)

The following are mutually inverse mappings:

connected quandles < quandle envelopes
(Q,%) — (LMIt(Q,*), Le)
Q(G7 Geu_c) — (G’C)

(in finite case) (G, () corresponds to a latin quandle iff (~*( has no fixed
point for every a € G \ Ge.

v
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Hayashi's conjecture

Conjecture (Hayashi)

Let Q be a finite connected quandle.
In Ly, the length of every cycle divides the length of the longest cycle.
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Hayashi's conjecture

Conjecture (Hayashi)

Let Q be a finite connected quandle.
In Ly, the length of every cycle divides the length of the longest cycle.

. use the canonical representation to translate the problem to groups:

Conjecture (Hayashi translated)

Let G be a transitive group over a finite set and ( € Z(G.) such that
(¢ =6
In ¢, the length of every cycle divides the length of the longest cycle.
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Enumeration of latin quandles

n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
monaff(n) | 0O 0 O O O O O O O O O O O 0 2 0
affy) | 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9
n|17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
non-aff(n) | 0 0 O O 2 0 O O O O 32 2 0 0 0 O
aff(n) |15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
non-aff(n) [ 2 0 O 1 0 O 2 0 0O O O 0 12 0 O
aff(n) | 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45
@ none of order 4k + 2 [Stein 1957, Galkin 1979]
@ non-aff(p)=non-aff(p?)=0 [Etingof-Soloviev-Guralnick 2001, Grafia 2004]
@ non-aff(3p)> 1 [Galkin 1981]
e non-aff(pg)=2if q | p? — 1, else = 0 [Bonatto 2019]
. various techniques, often translated to problems about finite
permutation groups
"~ DavidStanovsky | Yang-Baxter quasigroups 17/39



Commutator theory for quandles
[Bonatto, S., 2019]
. adapt the general commutator theory of universal algebra to quandles

. abelianness, solvability, nilpotence for quandles
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Commutator theory for quandles
[Bonatto, S., 2019]
. adapt the general commutator theory of universal algebra to quandles

. abelianness, solvability, nilpotence for quandles

abelian = "module-like”  (# commutative, # medial)
. abelian groups = the only groups that can be considered as modules

Definition (JDH Smith 1970s)

An algebraic structure A is called abelian if the diagonal is a congruence
block on A
Equivalently, if

t(a,un,...,up) =t(a,va,...,vp) = t(byur,...,us)=t(byvi,...,vp)

for every term operation t(x, yi,...,yn) and every a, b, u;, v; in A.
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Abelian algebraic structures

Definition (JDH Smith 1970s)

An algebraic structure A is called abelian if
t(a,ur,...,up) =t(a,va,...,vy) = t(byur,...,up) =t(b,v1,...,Vp)

for every term operation t(x,yi,...,yn) and every a, b, uj, v; in A.

Modules are abelian.
Proof: t(x,y1,...,¥n) = rx+>_ riyi, cancel ra, add rb.

An abelian group is commutative.
Proof: t(x,y,z) = yxz, all=11la = abl =1ba

An abelian quandle is medial.
Proof: t(x,y,u,v) = (xy)(uv),
y)(uv) = (yu)(yv) = (xy)(uv) = (xu)(yv)
"~ DavidStanovsky | Yang-Baxter quasigroups 19/39



Abelian algebras = modules, sometimes

polynomial operation = term operation with constants plugged in
A, B are polynomially equivalent = have the same polynomial operations

Mal'tsev operation: m(x,y,y) = m(y,y,x) = x

Theorem (Gumm-Smith 1970s)

TFAE for algebras with a Mal’tsev polynomial operation:
@ abelian

@ polynomially equivalent to a module

Examples: groups, loops, quasigroups
In particular, for latin quandles: abelian < medial < affine

Non-examples: quandles, monoids, semigroups
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Quandles and abelianness

Theorem (Jedli¢ka, Pilitowska, S., Zamojska-Dzienio 2018)

TFAE for a quandle Q:
© abelian
© subquandle of an affine quandle
@ Dis(Q) abelian, semiregular

Theorem (JPSZ 2018)

TFAE for a quandle Q:
@ abelian and "balanced orbits”
Q affine

@ Dis(Q) abelian, semiregular and "balanced occurences of generators”
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Solvability and nilpotence

An algebraic structure A is solvable, resp. nilpotent, if there are
congruences «; such that

and a1/ is an abelian, resp. central congruence of A/«;, for all i.

Need a good notion of abelianness and centrality for congruences.
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Solvability and nilpotence

An algebraic structure A is solvable, resp. nilpotent, if there are
congruences «; such that

and a1/ is an abelian, resp. central congruence of A/«;, for all i.

Need a good notion of abelianness and centrality for congruences.

Alternatively:
a® =qg) =14 o =logapl, ol =[al) 1]
An algebraic structure A is
e solvable iff a,) = 04 for some n

@ nilpotent iff alm = 04 for some n

Need a good notion of commutator of congruences.
"~ DavidStanovsky | Yang-Baxter quasigroups 22/39



Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]
Centralizing relation for congruences «, 3,9 of A:

C(a, 3; 0) iff for every term t(x,yi,...,yn) and every a = g Vi

§
t(a,un,...,up) = t(a,va,...,vn) = t(byur,...,un) =t(byvi,...,vp)
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Commutator theory
[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences «, 3,9 of A:

C(a, 3; 0) iff for every term t(x,yi,...,yn) and every a = g Vi

§ [
t(a,un,...,up) = t(a,va,...,vn) = t(byur,...,un) =t(byvi,...,vp)

The commutator [« 5] is the smallest ¢ such that C(a, 3;9).
A congruence « is called

e abelian if C(a, @;0,4), i.e., if [a,a] = 0a.

o central if C(a,14;04), i.e., if [a,14] = 0a.
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Commutator theory
[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences «, 3,9 of A:
C(a, 3; 0) iff for every term t(x,yi,...,yn) and every a Zbu=vy

§ 0
t(a,un,...,up) = t(a,va,...,vn) = t(byur,...,un) =t(byvi,...,vp)

The commutator [, 3] is the smallest 0 such that C(«, 3;0).

A congruence « is called
@ abelian if C(a,a;04), i.e., if [a,a] = 04.
e central if C(a,14;04), i.e., if [a, 14] = 0a.

Fact (not difficult, certainly not obvious)
In groups, this gives the usual commutator, abelianness, centrality.

Deep theory: works well in varieties with modular congruence lattices.
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Commutator theory for quandles

Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}
There is a Galois correspondence
Con(Q) «— N(Q)
a — Disy(Q) = (LXL;1 IXxay)
any = {(x,y): LXL;1 eN}«+— N
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Commutator theory for quandles

Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}
There is a Galois correspondence
Con(Q) +— N(Q)
a — Disy(Q) = (LXL;1 IXxay)
any = {(x,y): LXL;1 eN}«+— N

Proposition (BS)

TFAE for v, B € Con(Q), Q a quandle:
© « centralizes 3 over 0q, i.e., C(a, 3;00)
@ Disg(Q) centralizes Diso(Q) and acts a-semiregularly on Q

a-semiregularly means g(a) = a = g(b) = b for every b =

"~ DavidStanovsky | Yang-Baxter quasigroups 24/39



Abelian and central congruences

Corollary

TFAE for a congruence « of a quandle Q:
© « is abelian

@ Dis,(Q) is abelian and acts a-semiregularly

| A

Corollary
TFAE for a congruence « of a quandle Q:
Q « is central
@ Dis,(Q) is central and Dis(Q) acts a-semiregularly
If Q has certain transitivity conditions (e.g., if latin), then this is iff

e Q is a central extension of F = Q/«, i.e., (F X A, x) with
(x,a) = (y,b) = (xy, (1 —f)(a) + f(b) + Ox,)
where A is an abelian group, 6 : Q> — A satisfying the quandle
cocycle condition.
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Abelian, nilpotent, and solvable quandles

Theorem (JPSZ, BS)

quandle

Dis(Q)

affine

4

abelian

4

nilpotent

4

solvable

=

=

=

=4

abelian, semiregular, "balanced”

4

abelian, semiregular

4

nilpotent

4

solvable

Moreover, for finite connected faithful quandles (latin in particular):

nilpotent < direct product of connected quandles of prime power size.
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Latin quandles are solvable

Theorem (A. Stein 2001)
If Q is a finite latin quandle, then LMIt(Q) is solvable.

Finite latin quandles are solvable. l
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Application: enumeration of quandles

Corollary (S. Stein 1957)
No latin quandles of order = 2 (mod 4)

Proof:
@ it is not simple:
solvable simple = abelian = affine = of order p* by [Joyce 1982]

@ take the smallest counterexample @, consider a non-trivial
congruence with blocks of size m, quotient of size n

@ |Q| = mn, hence mor nis =2 (mod 4), hence either a block, or the
quotient, is a smaller counterexample
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Application: coloring knots by latin quandles

Theorem (Bae 2012)

Knots with trivial Alexander polynomial are not colorable by any affine
quandle.

Corollary

| A

Knots with trivial Alexander polynomial are not colorable by any latin
quandle.

Proof:
@ let ¢ be a non-trivial coloring
@ consider the subquandle S generated by Im(c); it is also solvable
@ the knot is colorable by every simple factor of S (easy to see)

@ however, simple factors of a solvable quandle are abelian, hence
affine, contradiction
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Application: Bruck loops of odd order are solvable
Recall from Loops'15: [S, Vojtéchovsky 2014]
solvability in the sense of Bruck # solvability in the sense of Smith

Theorem (Glauberman 1964 /68)
Bruck loops of odd order are
@ solvable in the sense of Bruck.
@ nilpotent iff direct product of Bruck loops of prime power order.

Bruck loops of odd order are solvable in the sense of Smith. l

Proof:
@ latin quandles are solvable
@ involutory latin quandles are polynomially equivalent to Bruck loops
of odd order [Kikkawa-Robinson]
@ polynomial equivalence preserves commutator properties
Also, (2) is a direct consequence of our theorem for quandles.
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Outline

1. The quantum Yang-Baxter equation
2. Left distributive quasigroups / latin quandles
3. Involutive quasigroup solutions / latin rumples

4. Idempotent quasigroup solutions / latin 777les
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Involutive quasigroup solutions / latin rumples
[Bonatto, Kinyon, S, Vojt&chovsky, 2019]

(x*xy)*(x*xz)=(y*x)*(y*2z)

Examples:
|01 23 |01 23
0|0 1 3 2 0|1 3 0 2
112 3 10 10 2 1 3
2|1 0 2 3 212 0 31
3132 01 313120
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Involutive quasigroup solutions / latin rumples
[Bonatto, Kinyon, S, Vojt&chovsky, 2019]

(x*xy)*(x*xz)=(y*x)*(y*2z)

Examples:
012 3 012 3
00 1 3 2 01 3 0 2
112 31 0 110 2 1 3
211 0 2 3 212 0 31
313 2 01 31131 20

.. are surprizingly HARD TO FIND !
@ brute force (order < 10) finds nothing else

@ no "natural” examples (yet?)
@ no "canonical representation” (yet?)
@ even affine examples not easy to find
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Affine latin rumples
Observation: Aff(A, ¢, 1, c) is involutive solution iff [p, 1] =

Example: Aff (Z3,(9%),(19),(3)), AfF(23,(93).(19).(3))

Observation:

o [p, 9] = ? iff [p~ ¢] =1
e if Ais cyclic, there is no such ¢, (automorphisms commute)
o if A=Zp then p | n (calculate the trace: 0 = n)
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Affine latin rumples
Observation: Aff(A, ¢, %, c) is involutive solution iff [p, ] = ©?

Example: Aff (Z3,(95).(19),(8)), Aff(Z3,(35).(11).(5))

Observation:

o [p, 9] = ? iff [p~ ¢] =1
e if Ais cyclic, there is no such ¢, 1 (automorphisms commute)
o if A=Zp then p | n (calculate the trace: 0 = n)

Theorem (BKSV)

A finite latin rumple of order n = pi* - - p/" exists if and only p; | n; Vi.

Idea of the proof:
@ only prime powers are interesting
@ find an example of order pP for every p, and use direct products
@ inductively, factor out the subgroup pA to get a smaller
counterexample
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Nilpotent latin rumples

Central extension: given an abelian group A, a quasigroup Q,
¢, € Aut(A), 0: Q%> — A

(Q x A, %), (x,a) * (y, b) = (x x y,p(a) + ¥(b) + 0(x,y))

If Q is a latin rumple and [¢, ] = ¢?, then we obtain a rumple iff

P(0(x,y) — 0y, x)) +(0(x, 2) = 0(y,2)) = O(y *x,y ¥ 2) — O(x * y, x * z)
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Nilpotent latin rumples

Central extension: given an abelian group A, a quasigroup Q,
¢, € Aut(A), 0: Q%> — A

(Q x A, %), (x,a) * (y, b) = (x x y,p(a) + ¥(b) + 0(x,y))

If Q is a latin rumple and [¢, ] = ¢?, then we obtain a rumple iff
¢(0(X7y) —g(y,X))+¢(0(X,Z) _e(yaz)) = H(y*x,y*z) —9(X*y,X*Z)
Computer calculation of cocycles:

@ solving a system of linear equations for (x, y) over A (e.g., = Z’;)

@ affine solutions must be removed

o (tricky part: filtering up to isomorphism)
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Enumeration / examples of latin rumples

Affine:
o order 22 ... 2, both over Z3
e order 2* ... 14, all over Z3
o order 2° ... many, over Z$ or 72 x 73
e order 3% ... 6, all over Z%
Non-affine, nilpotent:
e several of order 24, with various displacement groups
@ an example of order 2° not isotopic to a group,
@ an example of order 108 = 2233 with non-nilpotent displacement gp
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Enumeration / examples of latin rumples

Affine:
@ order 22 ... 2, both over Z%
e order 2* ... 14, all over Z3
o order 2° ... many, over Z$ or 72 x 73
e order 3% ... 6, all over Zg
Non-affine, nilpotent:
e several of order 24, with various displacement groups
@ an example of order 2° not isotopic to a group,
@ an example of order 108 = 2233 with non-nilpotent displacement gp
° ...

A bit of good news: [Etingof, Schedler, Soloviev, 1999]
the displacement group is always solvable (in finite case)
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Problems

Open problems:

simple constructions!

find non-nilpotent (non-solvable?) examples

determine existence spectrum for non-affine

commutator theory, relate nilpotence / solvability of @ and Dis(Q)

describe simple latin rumples
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Outline

1. The quantum Yang-Baxter equation
2. Left distributive quasigroups / latin quandles
3. Involutive quasigroup solutions / latin rumples

4. Idempotent quasigroup solutions / latin 777les
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Idempotent quasigroup solutions

(xxy)*(x*xz)=(yxy)=*(y*2)

Examples:
e (A, —) for any abelian group
o Aff(A,p,1,c)if and only if o = —1)

@ non-affine examples of order 6

Open problems: everything (spectrum, examples, enumeration, structure
theory, ...)

I STTSEEEGI Yo Baxter quesigoups 55



Things to remember

o finite group theory is a strong tool
(BUT, give your group-theoretical friend a quizz: If G is a transitive group over a finite
set, and ¢ € Z(Ge) such that (¢®) = G, prove that in ¢, the length of every cycle divides
the length of the longest cycle.)

@ commutator theory of universal algebra is a strong tool, too

(and offers a different definition of solvability for loops)

@ understanding latin / connected rumples (xy - xz = yx - yz) seems to
be a major challenge

e study Yang-Baxter quasigroups! (i.e., (Q,\,o) is a solution to YBE)

Thank you for your attention!
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