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David Stanovský Yang-Baxter quasigroups 1 / 39



Outline

1. The quantum Yang-Baxter equation

2. Left distributive quasigroups / latin quandles
(some new results since Loops’15)

3. Involutive quasigroup solutions / latin rumples
[ Bonatto, Kinyon, S, Vojtěchovský, 2019 ]

4. Idempotent quasigroup solutions / latin ???les
(open problem)
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The quantum Yang-Baxter equation
Consider

a monoidal category C
an object X in C
σ : X ⊗ X → X ⊗ X

Think about (Set,×) and (Vect,⊗).

The quantum Yang-Baxter equation for σ:

(σ ⊗ I )(I ⊗ σ)(σ ⊗ I ) = (I ⊗ σ)(σ ⊗ I )(I ⊗ σ)

(Vect) matrix representation of braid groups

(Vect) quantum physics

(Set) knot invariants

Set is a special case of Vect: permutation matrices
Set to Vect: by linearization and deformation
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Set-theoretical solutions of the Yang-Baxter equation
[Drinfeld 1990]

Let X be a set and σ : X × X → X × X a mapping, denote

σ(x , y) = (x ∗ y , x ◦ y).

Hence, we have an algebra (X , ∗, ◦).

The set-theoretical quantum Yang-Baxter equation

(σ × id)(id × σ)(σ × id) = (id × σ)(σ × id)(id × σ)

is equivalent to three identities:

x ∗ (y ∗ z) = (x ∗ y) ∗ ((x ◦ y) ∗ z)

(z ◦ y) ◦ x = (z ◦ (y ∗ x)) ◦ (y ◦ x)

(x ∗ y) ◦ ((x ◦ y) ∗ z) = (x ◦ (y ∗ z)) ∗ (y ◦ z)
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Examples

σ(x , y) = (x ∗ y , x ◦ y) such that

x ∗ (y ∗ z) = (x ∗ y) ∗ ((x ◦ y) ∗ z)

(z ◦ y) ◦ x = (z ◦ (y ∗ x)) ◦ (y ◦ x)

(x ∗ y) ◦ ((x ◦ y) ∗ z) = (x ◦ (y ∗ z)) ∗ (y ◦ z)

σ(x , y) = (y , x)

σ(x , y) = (x ∗ y , 1) ... YBE = associativity of ∗ ... monoids

σ(x , y) = (x ∗ y , x) ... YBE = left self-distributivity ... racks and quandles

σ(x , y) = (x ∨ y , x ∧ y) on a lattice ... always satisfies YBE

Mostly interested in non-degenerate solutions:
∗ is a left quasigroup, ◦ is a right quasigroup
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David Stanovský Yang-Baxter quasigroups 5 / 39



Knot coloring

[Kauffman? early 2000s?]

Consider a set of colors C and a quaternary relation R ⊆ C 4.

To every semi-arc, assign one of the colors from C .

For every crossing, demand

(col(a), col(b), col(c), col(d)) ∈ R

?? Invariant ??: count the number of admissible colorings
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Knot coloring (example)

C = {0, 1, 2, 3, 4}, R = {(a, b, b, c) : a + b ≡ c (mod 5)}
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Knot coloring

Fact

Coloring by (C ,R) is an invariant for knot/link equivalence if and only if
R is a graph of an algebra (C , ∗, ◦) such that it is

III a solution of the Yang-Baxter equation,

II non-degenerate, σ bijective,

I there is a permutation t on C s.t. t(a) ∗ a = a and a ◦ t(a) = t(a).
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Interesting classes of solutions of YBE

racks and quandles: non-degenerate and σ(x , y) = (x ∗ y , x)

involutive solutions: non-degenerate and σ2 = idX×X

idempotent solutions: non-degenerate and σ2 = σ

In all cases, ◦ is uniquely determined by ∗.

After a boring calculation (replacing ∗ for \, etc.), these are
term-equivalent to a variety of left quasigroups axiomatized by a single
identity:

racks and quandles: (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) [obvious]

involutive solutions: (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z) [Rump]

idempotent solutions: (x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z)
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Yang-Baxter quasigroups

Definition

A quasigroup (Q, ∗) is called Yang-Baxter quasigroup, if (Q, \, ◦) is a
solution to YBE, for some operation ◦.

Examples:

latin quandles = left distributive quasigroups:
(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z)

extensively studied since 1950s (Stein, Belousov&co., Galkin, ...)
[DS, A guide to self-distributive quasigroups, or latin quandles, 2015]

involutive solutions: (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z)
[Bonatto, Kinyon, DS, Vojtěchovský, 2019]

idempotent solutions: (x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z)
to do

Problem: other interesting classes?
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Intermezzo: definitions

Left multiplication group: LMlt(Q) = 〈La : a ∈ Q〉

Displacement group: Dis(Q) = 〈LaL−1
b : a, b ∈ Q〉

algebraically connected means LMlt(Q) transitive on Q
(quasigroups are algebraically connected)

Affine quasigroups: A an abelian group, ϕ,ψ ∈ Aut(A), c ∈ A

Aff(A, ϕ, ψ, c) = (A, ∗)
x ∗ y = ϕ(x) + ψ(y) + c
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Left distributive quasigroups / latin quandles

(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z)

i.e., LMlt(Q) ≤ Aut(Q)
(hence latin quandles are homogeneous, unlike other YB quasigroups)

Examples:

point reflection in euclidean geometry

affine quasigroups Aff(A, 1− ϕ,ϕ, 0),

(A, 2x − y) for any uniquely 2-divisible Bruck loop

...

embed into conjugation quandles

non-affine examples of orders 15, 21, 27, 28, 33, 36, 39, 45, ...

Problem: Determine the existence spectrum of non-affine latin quandles.
[See the lecture by Tomáš Nagy.]
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Coset construction

G group, H ≤ G , ψ ∈ Aut(G ) s.t. ψ(a) = a for all a ∈ H  

Q(G ,H, ψ) = (G/H, ∗) with aH ∗ bH = aψ(a−1b)H

Fact

Q(G ,H, ψ) is a homogeneous quandle

(in finite case) Q(G ,H, ψ) is a quasigroup iff for every a, u ∈ G
aψ(a−1) ∈ Hu ⇒ a ∈ H.

Every connected quandle Q is isomorphic to Q(G ,Ge ,−Le ) with
G = LMlt(Q), or G = Dis(Q) (minimal representation).
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Canonical representation

Fix a set Q and an element e.

Quandle envelope = (G , ζ) where G is a transitive group on Q and
ζ ∈ Z (Ge) such that 〈ζG 〉 = G .

Theorem (Hulpke, S., Vojtěchovský, 2016)

The following are mutually inverse mappings:

connected quandles ↔ quandle envelopes

(Q, ∗) → (LMlt(Q, ∗), Le)

Q(G ,Ge ,−ζ) ← (G , ζ)

(in finite case) (G , ζ) corresponds to a latin quandle iff ζ−1ζα has no fixed
point for every α ∈ G r Ge .
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Hayashi’s conjecture

Conjecture (Hayashi)

Let Q be a finite connected quandle.
In Lx , the length of every cycle divides the length of the longest cycle.

... use the canonical representation to translate the problem to groups:

Conjecture (Hayashi translated)

Let G be a transitive group over a finite set and ζ ∈ Z (Ge) such that
〈ζG 〉 = G.
In ζ, the length of every cycle divides the length of the longest cycle.

David Stanovský Yang-Baxter quasigroups 16 / 39



Hayashi’s conjecture

Conjecture (Hayashi)

Let Q be a finite connected quandle.
In Lx , the length of every cycle divides the length of the longest cycle.

... use the canonical representation to translate the problem to groups:

Conjecture (Hayashi translated)

Let G be a transitive group over a finite set and ζ ∈ Z (Ge) such that
〈ζG 〉 = G.
In ζ, the length of every cycle divides the length of the longest cycle.
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Enumeration of latin quandles

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
non-aff(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

aff(n) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
non-aff(n) 0 0 0 0 2 0 0 0 0 0 32 2 0 0 0 0

aff(n) 15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
non-aff(n) 2 0 0 1 0 0 2 0 0 0 0 0 12 0 0

aff(n) 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45

none of order 4k + 2 [Stein 1957, Galkin 1979]

non-aff(p)=non-aff(p2)=0 [Etingof-Soloviev-Guralnick 2001, Graña 2004]

non-aff(3p)≥ 1 [Galkin 1981]

non-aff(pq)= 2 if q | p2 − 1, else = 0 [Bonatto 2019]

... various techniques, often translated to problems about finite
permutation groups
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Commutator theory for quandles

[Bonatto, S., 2019]

... adapt the general commutator theory of universal algebra to quandles

... abelianness, solvability, nilpotence for quandles

abelian = ”module-like” ( 6= commutative, 6= medial)

... abelian groups = the only groups that can be considered as modules

Definition (JDH Smith 1970s)

An algebraic structure A is called abelian if the diagonal is a congruence
block on A2.
Equivalently, if

t(a, u1, . . . , un) = t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un) = t(b, v1, . . . , vn)

for every term operation t(x , y1, . . . , yn) and every a, b, ui , vi in A.
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Abelian algebraic structures

Definition (JDH Smith 1970s)

An algebraic structure A is called abelian if

t(a, u1, . . . , un) = t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un) = t(b, v1, . . . , vn)

for every term operation t(x , y1, . . . , yn) and every a, b, ui , vi in A.

Modules are abelian.
Proof: t(x , y1, . . . , yn) = rx +

∑
riyi , cancel ra, add rb.

An abelian group is commutative.
Proof: t(x , y , z) = yxz , a11 = 11a ⇒ ab1 = 1ba

An abelian quandle is medial.
Proof: t(x , y , u, v) = (xy)(uv),
(yy)(uv) = (yu)(yv) ⇒ (xy)(uv) = (xu)(yv)
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Abelian algebras = modules, sometimes

polynomial operation = term operation with constants plugged in
A,B are polynomially equivalent = have the same polynomial operations

Mal’tsev operation: m(x , y , y) = m(y , y , x) = x

Theorem (Gumm-Smith 1970s)

TFAE for algebras with a Mal’tsev polynomial operation:

1 abelian

2 polynomially equivalent to a module

Examples: groups, loops, quasigroups

In particular, for latin quandles: abelian ⇔ medial ⇔ affine

Non-examples: quandles, monoids, semigroups
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Quandles and abelianness

Theorem (Jedlička, Pilitowska, S., Zamojska-Dzienio 2018)

TFAE for a quandle Q:

1 abelian

2 subquandle of an affine quandle

3 Dis(Q) abelian, semiregular

Theorem (JPSZ 2018)

TFAE for a quandle Q:

1 abelian and ”balanced orbits”

2 affine

3 Dis(Q) abelian, semiregular and ”balanced occurences of generators”
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Solvability and nilpotence
An algebraic structure A is solvable, resp. nilpotent, if there are
congruences αi such that

0A = α0 ≤ α1 ≤ ... ≤ αk = 1A

and αi+1/αi is an abelian, resp. central congruence of A/αi , for all i .

Need a good notion of abelianness and centrality for congruences.

Alternatively:
α(0) = α(0) = 1A, α(i+1) = [α(i), α(i)], α(i+1) = [α(i), 1A]

An algebraic structure A is

solvable iff α(n) = 0A for some n

nilpotent iff α(n) = 0A for some n

Need a good notion of commutator of congruences.
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Commutator theory
[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of A:

C (α, β; δ) iff for every term t(x , y1, . . . , yn) and every a
α≡ b, ui

β
≡ vi

t(a, u1, . . . , un)
δ≡ t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un)

δ≡ t(b, v1, . . . , vn)

The commutator [α, β] is the smallest δ such that C (α, β; δ).

A congruence α is called

abelian if C (α, α; 0A), i.e., if [α, α] = 0A.

central if C (α, 1A; 0A), i.e., if [α, 1A] = 0A.

Fact (not difficult, certainly not obvious)

In groups, this gives the usual commutator, abelianness, centrality.

Deep theory: works well in varieties with modular congruence lattices.
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Commutator theory for quandles

Let N(Q) = {N ≤ Dis(Q) : N is normal in LMlt(Q)}

There is a Galois correspondence

Con(Q)←→ N(Q)

α→ Disα(Q) = 〈LxL−1
y : x α y〉

αN = {(x , y) : LxL
−1
y ∈ N} ← N

Proposition (BS)

TFAE for α, β ∈ Con(Q), Q a quandle:

1 α centralizes β over 0Q , i.e., C (α, β; 0Q)

2 Disβ(Q) centralizes Disα(Q) and acts α-semiregularly on Q

α-semiregularly means g(a) = a ⇒ g(b) = b for every b
α≡ a
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Abelian and central congruences

Corollary

TFAE for a congruence α of a quandle Q:

1 α is abelian

2 Disα(Q) is abelian and acts α-semiregularly

Corollary

TFAE for a congruence α of a quandle Q:

1 α is central

2 Disα(Q) is central and Dis(Q) acts α-semiregularly

If Q has certain transitivity conditions (e.g., if latin), then this is iff

Q is a central extension of F = Q/α, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , (1− f )(a) + f (b) + θx ,y )

where A is an abelian group, θ : Q2 → A satisfying the quandle
cocycle condition.
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Abelian, nilpotent, and solvable quandles

Theorem (JPSZ, BS)

quandle Dis(Q)

affine ⇔ abelian, semiregular, ”balanced”
⇓ ⇓

abelian ⇔ abelian, semiregular
⇓ ⇓

nilpotent ⇔ nilpotent
⇓ ⇓

solvable ⇔ solvable

Moreover, for finite connected faithful quandles (latin in particular):
nilpotent ⇔ direct product of connected quandles of prime power size.
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Latin quandles are solvable

Theorem (A. Stein 2001)

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary

Finite latin quandles are solvable.
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Application: enumeration of quandles

Corollary (S. Stein 1957)

No latin quandles of order ≡ 2 (mod 4)

Proof:

it is not simple:
solvable simple ⇒ abelian ⇒ affine ⇒ of order pk by [Joyce 1982]

take the smallest counterexample Q, consider a non-trivial
congruence with blocks of size m, quotient of size n

|Q| = mn, hence m or n is ≡ 2 (mod 4), hence either a block, or the
quotient, is a smaller counterexample
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Application: coloring knots by latin quandles

Theorem (Bae 2012)

Knots with trivial Alexander polynomial are not colorable by any affine
quandle.

Corollary

Knots with trivial Alexander polynomial are not colorable by any latin
quandle.

Proof:

let c be a non-trivial coloring

consider the subquandle S generated by Im(c); it is also solvable

the knot is colorable by every simple factor of S (easy to see)

however, simple factors of a solvable quandle are abelian, hence
affine, contradiction
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Application: Bruck loops of odd order are solvable
Recall from Loops’15: [S, Vojtěchovský 2014]

solvability in the sense of Bruck 6= solvability in the sense of Smith

Theorem (Glauberman 1964/68)

Bruck loops of odd order are

1 solvable in the sense of Bruck.

2 nilpotent iff direct product of Bruck loops of prime power order.

Theorem

Bruck loops of odd order are solvable in the sense of Smith.

Proof:

latin quandles are solvable
involutory latin quandles are polynomially equivalent to Bruck loops
of odd order [Kikkawa-Robinson]
polynomial equivalence preserves commutator properties

Also, (2) is a direct consequence of our theorem for quandles.
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Outline

1. The quantum Yang-Baxter equation

2. Left distributive quasigroups / latin quandles

3. Involutive quasigroup solutions / latin rumples

4. Idempotent quasigroup solutions / latin ???les
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Involutive quasigroup solutions / latin rumples
[Bonatto, Kinyon, S, Vojtěchovský, 2019]

(x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z)

Examples:
0 1 2 3

0 0 1 3 2
1 2 3 1 0
2 1 0 2 3
3 3 2 0 1

0 1 2 3

0 1 3 0 2
1 0 2 1 3
2 2 0 3 1
3 3 1 2 0

... are surprizingly HARD TO FIND !

brute force (order ≤ 10) finds nothing else

no ”natural” examples (yet?)

no ”canonical representation” (yet?)

even affine examples not easy to find
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Affine latin rumples
Observation: Aff(A, ϕ, ψ, c) is involutive solution iff [ϕ,ψ] = ϕ2

Example: Aff
(
Z2

2, (
0 1
1 0 ) , ( 1 0

1 1 ) , ( 0
0 )
)
, Aff

(
Z2

2, (
0 1
1 0 ) , ( 1 0

1 1 ) , ( 1
0 )
)

Observation:

[ϕ,ψ] = ϕ2 iff [ψ−1, ϕ] = 1

if A is cyclic, there is no such ϕ,ψ (automorphisms commute)

if A = Zn
p then p | n (calculate the trace: 0 = n)

Theorem (BKSV)

A finite latin rumple of order n = pn1
1 · · · pnrr exists if and only pi | ni ∀i .

Idea of the proof:

only prime powers are interesting

find an example of order pp for every p, and use direct products

inductively, factor out the subgroup pA to get a smaller
counterexample
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Nilpotent latin rumples

Central extension: given an abelian group A, a quasigroup Q,
φ, ψ ∈ Aut(A), θ : Q2 → A

(Q × A, ∗), (x , a) ∗ (y , b) = (x ∗ y , φ(a) + ψ(b) + θ(x , y))

If Q is a latin rumple and [φ, ψ] = φ2, then we obtain a rumple iff

φ(θ(x , y)− θ(y , x)) +ψ(θ(x , z)− θ(y , z)) = θ(y ∗ x , y ∗ z)− θ(x ∗ y , x ∗ z)

Computer calculation of cocycles:

solving a system of linear equations for θ(x , y) over A (e.g., = Zk
p)

affine solutions must be removed

(tricky part: filtering up to isomorphism)
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Enumeration / examples of latin rumples

Affine:

order 22 ... 2, both over Z2
2

order 24 ... 14, all over Z4
2

order 26 ... many, over Z6
2 or Z2

4 × Z2
2

order 33 ... 6, all over Z3
3

Non-affine, nilpotent:

several of order 24, with various displacement groups

an example of order 26 not isotopic to a group,

an example of order 108 = 2233 with non-nilpotent displacement gp

...

A bit of good news: [Etingof, Schedler, Soloviev, 1999]

the displacement group is always solvable (in finite case)
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Problems

Open problems:

simple constructions!

find non-nilpotent (non-solvable?) examples

determine existence spectrum for non-affine

commutator theory, relate nilpotence / solvability of Q and Dis(Q)

describe simple latin rumples

...
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Outline

1. The quantum Yang-Baxter equation

2. Left distributive quasigroups / latin quandles

3. Involutive quasigroup solutions / latin rumples

4. Idempotent quasigroup solutions / latin ???les
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Idempotent quasigroup solutions

(x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z)

Examples:

(A,−) for any abelian group

Aff(A, ϕ, ψ, c) if and only if ϕ = −ψ
non-affine examples of order 6

Open problems: everything (spectrum, examples, enumeration, structure
theory, ...)
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Things to remember

finite group theory is a strong tool
(BUT, give your group-theoretical friend a quizz: If G is a transitive group over a finite

set, and ζ ∈ Z(Ge) such that 〈ζG 〉 = G , prove that in ζ, the length of every cycle divides

the length of the longest cycle.)

commutator theory of universal algebra is a strong tool, too
(and offers a different definition of solvability for loops)

understanding latin / connected rumples (xy · xz = yx · yz) seems to
be a major challenge

study Yang-Baxter quasigroups! (i.e., (Q, \, ◦) is a solution to YBE)

Thank you for your attention!
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