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Symmetric monoidal categories (V,®,1) with extra structure:

contravariant duality functor *: V — V,
natural transformation evaluation evy4: A® A* —1; and
natural transformation coevaluation coev,: 1 > A*® A,

such that the (mutually dual) yanking conditions hold:

1 coev
A A

A®A* @ AP 4 reduces to 14

and A*CMAA*Q@A@A* LABEY A+ reduces to 1 4%,

for each object A of V.
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Finite-dimensional real vector spaces

Suppose spaces A, B have respective finite bases X,Y,
SO A® B has basis X XY ={zQy|xe X,yeY}.

Unit object 1 = R, with basis {1}.

Duality functor *: R — R; A — A* = R(A4,R)
Evaluation evy: A® A* = R 2’ ® 0z + /02 = 6,1,
Coevaluation coevy: R - A" @ A; 1 — > cx 02 Qx

First yanking condition

r 1 y,®coev evl
v A @1 AT Y ex bz @ 4

D rcX 2, Qr=1Q CE/L%:B/
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Examples of compact-closed categories

The category of finite-dimensional Hilbert spaces;

Categories of finitely-generated free semimodules over a semiring;
Joyal's category of Conway games;

The category (Rel,®, T) of relations between sets, say T = {0},
tensor product A ® B is the Cartesian product,

biproduct A @ B is the disjoint union, - dual A* = A,

evy ={(a®a,0)|ac A}, - coevy = {(0,a®a) |a € A},

vanking {(a,a®@b®b) |a,be Alo{(a®a®b,b) |a,bec A} = A.
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Augmented magma: (A, u,A,e) in compact closed (V,®,1) with:
multiplication (structure) u: AQ A — A*,
comultiplication A: A—- A® A, and

augmentation e: A — 1, such that

CoevARQu 1 (xQART 4
AR A ATQA® A" A*QAR AR A®
ERE TREV »
1 AR A*

€V gy

commutes.
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Commutative, unital ring R, finite group G, group algebra RG.
Hopf algebra (RG,V,n, A,e,5) with A:g—~g®g and e: g —1
gives augmented magma (RG, u, A,¢) in (R, ®, R) with

multiplication structure p: RG ® RG — RG™, g @ h > [dg, > 65 4p] -

Diagram chase for the augmented magma condition:

COGVA@/L 1A*®A®1A*
g h ZxEG(Sl’@x@égh’ ZxEG5$®x®x®5gh
€®€ T®eVA
1 = 0gh,gh eV 4 2aeG Oz,gh(T @ Oz)

Remark: If R =7, then €. g — 1 is the augmentation in ZG.
In general, the augmentation need not be a counit for A.
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Hypermagmas

Consider set A with function A x A — 24; (z,y) — z o y.

In (Rel,®, T), take augmentation e = {(«,0) | x € A},
comultiplication A ={(z,x® x) | x € A}, i.e., diagonal relation,
and multiplication relation {(zr ® y,z) | z,y,z € A, z € x o y}.
Hypermagma: z ¢y is nonempty for all z,y in A.

Theorem: Set A with function A x A — 24: (z,y) — z oy
forms a hypermagma if and only if (A, u, A,¢)

is an augmented magma in the category (Rel,®, T).

Magmas and hypermagmas treated uniformly, regardless of type!

In the magma case, (A, u, A, ¢e) lies in (Set,®, T).
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Compact closed category (V,®,1).

Lemma: There is a natural isomorphism with components
qu,B,C: V(BRAC)— V(B,C® A*)
at objects A,B,C of V.

For an object A of V, define
T13 - A3®A2®A1—>A1®A2®A3;a3®a2®a1r—>a1®a2®a3
and

T3 - A1®A3®A2—>A1®A2®A3;a1®a3®a2|—>a1®a2®a3
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Given an augmented magma (A, u, A,e) in (V,®,1),

have right division (structure) p: A® A — A* with
P = 194 A 1TI3PA AR AL
and left division (structure) \: A® A — A* with

_ 1
A= 14 A94,1T23PA4,AR A1

(A, u,p, N\, A e) is the (augmented) prequasigroup on (A, u, A, ).

Augmented quasigroup: Augmented magma (A, u, A, ¢)
for which (A, p,A,e) and (A, \, A, e) are augmented magmas.
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Group algebra RG had multiplication structure

Thus  uéns raera.r: ©OY® 2 2y,
whence /“b;zé:,RG@RG,R i3 2QYR T+ 0y py = 5x72y_1 = 536,2/?3,,

: . —1 _
so right division “¢RG,RG®RG,RTT3 PRG,RGORG,R =P  ZQY > 0,/

Similarly, have left division structure A\: x ® z+—= 0,1, = 0\,

Associativity not used for the augmented magma condition on pu,
so conclude that (RG, u, A, e) is an augmented quasigroup.

Works equally well for a finite quasigroup (G, -, /,\).
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Marty quasigroups as augmented quasigroups

(A, o, £, \) with hypermagma structures (A,¢), (A, X), and (A, X) is
a Marty quasigroup iff Vx,y,z€ A, zexoyrxczAysyEexnz.

Hypergroup if ¢ is associative [F. Marty, 1936].
Theorem: Marty quasigroups = augmented quasigroups in (Rel,®, T).

Corollary: Heyting algebra (A, A, —), meet semilattice with
cNy<z & zz<y—z <& y<z—z,

is a Marty quasigroup or augmented quasigroup in (Rel,®, T)

with  zoy=1(xAy), zAy=1l(y—2), xxz=l(z— 2).
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Multisets as augmented comagmas

For A=NX in (N,®,N), augmented comagma (A, A,¢)
with diagonal A: z — x ® * and augmentation €: A — N.

Set Ag={a € A|aA =a®a and ac # 0} of grouplike elements.
Augmented comagma (A, A,e) is multisetlike if A = NA,.
[Note: if A% {0} and € =0, then (A, A,¢) is not multisetlike.]
Then have multiset ¢: X — NT;z — w(z), setlike if e: X — {1}.

Tare weight | X|, gross weight Y . x w(z).



The Lifting Theorem



The Lifting Theorem

In (N, ®,N), multisetlike object (NX,A,ex) lifts to, or is covered by,
setlike object (INQ, A, gq) if there is a surjective covering function

F1Q = X with ex = Syex ( Sqeqafss )



The Lifting Theorem

In (N, ®,N), multisetlike object (NX,A,ex) lifts to, or is covered by,
setlike object (INQ, A, gq) if there is a surjective covering function

F1Q = X with ex = Syex ( Sqeqafss )

In other words, ex: X — N1z — |f~1{z}|.



The Lifting Theorem

In (N, ®,N), multisetlike object (NX,A,ex) lifts to, or is covered by,
setlike object (INQ, A, gq) if there is a surjective covering function

F1Q = X with ex = Syex ( Sqeqafss )

In other words, ex: X — N1z — |f~1{z}|.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:



The Lifting Theorem

In (N, ®,N), multisetlike object (NX,A,ex) lifts to, or is covered by,
setlike object (INQ, A, gq) if there is a surjective covering function

F1Q = X with ex = Syex ( Sqeqafss )

In other words, ex: X — N1z — |f~1{z}|.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:

A multisetlike augmented quasigroup (NX, ux,Ax,ex)
of gross weight W in (N, ®,N)



The Lifting Theorem

In (N, ®,N), multisetlike object (NX,A,ex) lifts to, or is covered by,
setlike object (INQ, A, gq) if there is a surjective covering function

F1Q = X with ex = Syex ( Sqeqafss )

In other words, ex: X — N1z — |f~1{z}|.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:

A multisetlike augmented quasigroup (NX, ux,Ax,ex)
of gross weight W in (N, ®,N)

lifts to a setlike quasigroup algebra (NQ, up, Dp,ep) with |Q| = W.
Q=@ =Q
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.. .is the group G of homomorphisms x: G — S1
from G to the circle group S ={z € C |2z = 1}.

cC3/0 1 2

. xo/1 1 1

Example: Group C3 with character table >
X111 w w

xo | 1 w2  w

® | X0 X1 X2
X0 | X0 X1 X2
X1 | X1 X2 Xo
X2 | X2 X0 X1




T he dual group of a finite abelian group G ...

.. .is the group G of homomorphisms x: G — S1
from G to the circle group S ={z € C |2z = 1}.

Example: Group ('3 with character table

X0

X1

X2

C3

X0
X1
X2

&

el L)

X0

X0

X1

X2

X1

X1

X2

X0

X2

X2

X0

X1

X0
X1
X2

X0
X1
X2



A dual quasigroup of a finite group &G ...



A dual quasigroup of a finite group &G ...

... IS a quasigroup lift G of the group’s character algebra NGV with
eqv: Xi — xi(1)2 and pavi X @ x5 — [ = X (Dx (W (1) 6 @ x5 | xa)]
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... IS a quasigroup lift G of the group’s character algebra NGV with
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S3 |1 t C

] . x1 |1 1 1
Example: Group S3 with character table

x> |1 -1 1

g ' 2 0 -1




A dual quasigroup of a finite group &G ...

... IS a quasigroup lift G of the group’s character algebra NGV with
eqv: Xi — xi(1)2 and pavi X @ x5 — [ = X (Dx (W (1) 6 @ x5 | xa)]

S3 |1 t C
] . x1 |1 1 1
Example: Group S3 with character table
x> |1 -1 1
g |12 0 -1
® | X1 X2 0
X1 | X1 X2 0
X2 | X2 X1 0
010 0 x1t+tx2+60
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... IS a quasigroup lift G of the group’s character algebra NGV with
eqv: Xi — xi(1)2 and pavi X @ x5 — [ = X (Dx (W (1) 6 @ x5 | xa)]

S3 |1 t C
] . x1 |1 1 1
Example: Group S3 with character table
x> |1 -1 1
g ' 2 0 -1
Sz | x1|x2| 01 02 03 04
0 0 0 0
X1 || X1 | X2 91 92 93 94 2 | x1 xo 0
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X2 | X2 X1 0
O2 | 02| 0102 03 x2 x1 0| 0 0 x14+xot0




A dual quasigroup of a finite group G ...

... IS a quasigroup lift G of the group’s character algebra NGV with
eqv: Xi — xi(1)2 and pavi X @ x5 — [ = X (Dx (W (1) 6 @ x5 | xa)]

S3 |1 t C
] . x1 |1 1 1
Example: Group S3 with character table
x> |1 -1 1
g ' 2 0 -1
Sz | x1|x2| 01 02 03 04
0 0 0 0
X1 || X1 | X2 91 92 93 94 2 | x1 xo 0
X2 || X2 | X1 2 1 4 3 Y1 | X1 X2 0

X2 | X2 X1 0
O2 | 02| 0102 03 x2 x1 0| 0 0 x14+xot0

E.g., 0(1)%(0 ®0]6) = 8 = |{01,02}% U {03,04}7].



Thank you for your attention!



