Augmented quasigroups: from group duals to Heyting algebras

Jonathan D.H. Smith Iowa State University

email: jdhsmith@iastate.edu

https://orion.math.iastate.edu/jdhsmith/

A symmetric monoidal category is a category V

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A, B) \mapsto A \otimes B$

A symmetric monoidal category is a category V with a (tensor product) bifunctor $\otimes : V \times V \to V; (A, B) \mapsto A \otimes B$ and a (unit) object 1

A symmetric monoidal category is a category V with a (tensor product) bifunctor $\otimes \colon V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid

A symmetric monoidal category is a category V with a (tensor product) bifunctor $\otimes : V \times V \to V; (A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

• (Set, \times , \top), (Rel, \times , \top) with a one-element set \top ;

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

- $(\mathbf{Set}, \times, \top)$, $(\mathbf{Rel}, \times, \top)$ with a one-element set \top ;
- Category $(\underline{P}, \otimes, P)$ of finitely-generated free (semi-)modules over a commutative unital (semi-)ring P;

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

- (Set, \times , \top), (Rel, \times , \top) with a one-element set \top ;
- Category $(\underline{P}, \otimes, P)$ of finitely-generated free (semi-)modules over a commutative unital (semi-)ring P;
- Any entropic variety (V, \otimes, I) , with tensor product \otimes and I free on one generator;

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

- $(\mathbf{Set}, \times, \top)$, $(\mathbf{Rel}, \times, \top)$ with a one-element set \top ;
- Category $(\underline{P}, \otimes, P)$ of finitely-generated free (semi-)modules over a commutative unital (semi-)ring P;
- Any entropic variety (V, \otimes, I) , with tensor product \otimes and I free on one generator;
- Any category $(C, +, \bot)$ with coproduct + and initial object \bot .

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

- $(\mathbf{Set}, \times, \top)$, $(\mathbf{Rel}, \times, \top)$ with a one-element set \top ;
- Category $(\underline{P}, \otimes, P)$ of finitely-generated free (semi-)modules over a commutative unital (semi-)ring P;
- Any entropic variety (V, \otimes, I) , with tensor product \otimes and I free on one generator;
- Any category $(C, +, \bot)$ with coproduct + and initial object \bot .

Magma: $(A, \nabla : A \otimes A \rightarrow A)$

A symmetric monoidal category is a category V with a (tensor product) bifunctor \otimes : $V \times V \to V$; $(A,B) \mapsto A \otimes B$ and a (unit) object 1 such that $(V, \otimes, 1)$ is a commutative Monoid (up to coherent natural isomorphisms like $1 \otimes A \xrightarrow{l_A} A \xrightarrow{r_A} A \otimes 1$, etc.)

Examples:

- $(\mathbf{Set}, \times, \top)$, $(\mathbf{Rel}, \times, \top)$ with a one-element set \top ;
- Category $(\underline{P}, \otimes, P)$ of finitely-generated free (semi-)modules over a commutative unital (semi-)ring P;
- \bullet Any entropic variety $(V, \otimes, I),$ with tensor product \otimes and I free on one generator;
- Any category $(C, +, \bot)$ with coproduct + and initial object \bot .

Magma: $(A, \nabla : A \otimes A \to A)$ Comagma: $(A, \Delta : A \to A \otimes A)$

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure: contravariant duality functor $^*\colon V \to V$;

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant duality functor *: $V \rightarrow V$; natural transformation evaluation $ev_A: A \otimes A^* \rightarrow 1$;

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant **duality functor** *: $V \to V$; natural transformation **evaluation** $ev_A : A \otimes A^* \to 1$; and natural transformation **coevaluation** $ev_A : A \otimes A^* \to A$,

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant **duality functor** *: $V \to V$; natural transformation **evaluation** $ev_A : A \otimes A^* \to 1$; and natural transformation **coevaluation** $ev_A : A \otimes A^* \to A$,

such that the (mutually dual) yanking conditions hold:

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant **duality functor** *: $V \to V$; natural transformation **evaluation** $ev_A : A \otimes A^* \to 1$; and natural transformation **coevaluation** $ev_A : A \otimes A^* \to A$,

such that the (mutually dual) yanking conditions hold:

$$A \xrightarrow{1_A \otimes \mathsf{coev}} A \otimes A^* \otimes A \xrightarrow{\mathsf{ev} \otimes 1_A} A$$
 reduces to 1_A

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant **duality functor** *: $V \to V$; natural transformation **evaluation** $ev_A : A \otimes A^* \to 1$; and natural transformation **coevaluation** $ev_A : A \otimes A^* \to A$,

such that the (mutually dual) yanking conditions hold:

$$A \xrightarrow{\mathbf{1}_A \otimes \mathsf{coev}} A \otimes A^* \otimes A \xrightarrow{\mathsf{ev} \otimes \mathbf{1}_A} A$$
 reduces to $\mathbf{1}_A$

and $A^* \xrightarrow{\operatorname{coev} \otimes 1_A} A^* \otimes A \otimes A^* \xrightarrow{1_A \otimes \operatorname{ev}} A^*$ reduces to 1_{A^*} ,

Symmetric monoidal categories $(V, \otimes, 1)$ with extra structure:

contravariant **duality functor** *: $V \to V$; natural transformation **evaluation** $ev_A : A \otimes A^* \to 1$; and natural transformation **coevaluation** $ev_A : A \otimes A^* \to A$,

such that the (mutually dual) yanking conditions hold:

$$A \xrightarrow{\mathbf{1}_A \otimes \mathsf{coev}} A \otimes A^* \otimes A \xrightarrow{\mathsf{ev} \otimes \mathbf{1}_A} A$$
 reduces to $\mathbf{1}_A$

and $A^* \xrightarrow{\operatorname{coev} \otimes 1_A} A^* \otimes A \otimes A^* \xrightarrow{1_A \otimes \operatorname{ev}} A^*$ reduces to 1_{A^*} ,

for each object A of V.

Pictorial yanking

Pictorial yanking

Suppose spaces A,B have respective finite bases X,Y,

Suppose spaces A, B have respective finite bases X, Y, so $A \otimes B$ has basis $X \times Y = \{x \otimes y \mid x \in X, y \in Y\}$.

Suppose spaces A,B have respective finite bases X,Y, so $A\otimes B$ has basis $X\times Y=\{x\otimes y\mid x\in X,y\in Y\}.$

Unit object $1 = \mathbb{R}$, with basis $\{1\}$.

Suppose spaces A, B have respective finite bases X, Y, so $A \otimes B$ has basis $X \times Y = \{x \otimes y \mid x \in X, y \in Y\}$.

Unit object $1 = \mathbb{R}$, with basis $\{1\}$.

Duality functor *: $\underline{\mathbb{R}} \to \underline{\mathbb{R}}$; $A \mapsto A^* = \underline{\mathbb{R}}(A, \mathbb{R})$

Suppose spaces A, B have respective finite bases X, Y, so $A \otimes B$ has basis $X \times Y = \{x \otimes y \mid x \in X, y \in Y\}$.

Unit object $1 = \mathbb{R}$, with basis $\{1\}$.

Duality functor *: $\underline{\mathbb{R}} \to \underline{\mathbb{R}}$; $A \mapsto A^* = \underline{\mathbb{R}}(A, \mathbb{R})$

Evaluation $\operatorname{ev}_A \colon A \otimes A^* \to \mathbb{R}; x' \otimes \delta_x \mapsto x' \delta_x = \delta_{x',x}$

Suppose spaces A, B have respective finite bases X, Y, so $A \otimes B$ has basis $X \times Y = \{x \otimes y \mid x \in X, y \in Y\}$.

Unit object $1 = \mathbb{R}$, with basis $\{1\}$.

Duality functor *: $\underline{\mathbb{R}} \to \underline{\mathbb{R}}$; $A \mapsto A^* = \underline{\mathbb{R}}(A, \mathbb{R})$

Evaluation $\operatorname{ev}_A \colon A \otimes A^* \to \mathbb{R}; x' \otimes \delta_x \mapsto x' \delta_x = \delta_{x',x}$

Coevaluation $\operatorname{coev}_A \colon \mathbb{R} \to A^* \otimes A$; $1 \mapsto \sum_{x \in X} \delta_x \otimes x$

Suppose spaces A, B have respective finite bases X, Y, so $A \otimes B$ has basis $X \times Y = \{x \otimes y \mid x \in X, y \in Y\}$.

Unit object $1 = \mathbb{R}$, with basis $\{1\}$.

Duality functor *: $\mathbb{R} \to \mathbb{R}$; $A \mapsto A^* = \mathbb{R}(A, \mathbb{R})$

Evaluation $\operatorname{ev}_A \colon A \otimes A^* \to \mathbb{R}; x' \otimes \delta_x \mapsto x' \delta_x = \delta_{x',x}$

Coevaluation $\operatorname{coev}_A \colon \mathbb{R} \to A^* \otimes A$; $1 \mapsto \sum_{x \in X} \delta_x \otimes x$

First yanking condition

$$x' \overset{r_A^{-1}}{\longmapsto} x' \otimes 1 \overset{1_A \otimes \mathsf{coev}}{\longmapsto} x' \otimes \sum_{x \in X} \delta_x \otimes x \overset{\mathsf{ev} \otimes 1_A}{\longmapsto} \sum_{x \in X} x' \delta_x \otimes x = 1 \otimes x' \overset{l_A}{\longmapsto} x'$$

• The category of finite-dimensional Hilbert spaces;

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,
 - biproduct $A \oplus B$ is the disjoint union,

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,
 - biproduct $A \oplus B$ is the disjoint union, dual $A^* = A$,

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,
 - biproduct $A \oplus B$ is the disjoint union, dual $A^* = A$,
 - $\operatorname{ev}_A = \{(a \otimes a, 0) \mid a \in A\},\$

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,
 - biproduct $A \oplus B$ is the disjoint union, dual $A^* = A$,
 - $\operatorname{ev}_A = \{(a \otimes a, 0) \mid a \in A\},$ $\operatorname{coev}_A = \{(0, a \otimes a) \mid a \in A\},$

- The category of finite-dimensional Hilbert spaces;
- Categories of finitely-generated free semimodules over a semiring;
- Joyal's category of Conway games;
- The category (Rel, \otimes, \top) of relations between sets, say $\top = \{0\}$,
 - tensor product $A \otimes B$ is the Cartesian product,
 - biproduct $A \oplus B$ is the disjoint union, dual $A^* = A$,
 - $\operatorname{ev}_A = \{(a \otimes a, 0) \mid a \in A\},$ $\operatorname{coev}_A = \{(0, a \otimes a) \mid a \in A\},$
 - yanking $\{(a, a \otimes b \otimes b) \mid a, b \in A\} \circ \{(a \otimes a \otimes b, b) \mid a, b \in A\} = \widehat{A}$.

Augmented magma: $(A, \mu, \Delta, \varepsilon)$ in compact closed $(V, \otimes, 1)$ with:

Augmented magma: $(A, \mu, \Delta, \varepsilon)$ in compact closed $(V, \otimes, 1)$ with:

multiplication (structure) $\mu: A \otimes A \to A^*$,

Augmented magma: $(A, \mu, \Delta, \varepsilon)$ in compact closed $(V, \otimes, 1)$ with:

multiplication (structure) $\mu: A \otimes A \to A^*$,

comultiplication $\Delta: A \to A \otimes A$,

Augmented magma: $(A, \mu, \Delta, \varepsilon)$ in compact closed $(V, \otimes, 1)$ with:

multiplication (structure) $\mu: A \otimes A \to A^*$,

comultiplication $\Delta: A \to A \otimes A$, and

augmentation $\varepsilon: A \to 1$,

Augmented magma: $(A, \mu, \Delta, \varepsilon)$ in compact closed $(V, \otimes, 1)$ with:

multiplication (structure) $\mu: A \otimes A \to A^*$,

comultiplication $\Delta: A \to A \otimes A$, and

augmentation ε : $A \rightarrow 1$, such that

commutes.

Commutative, unital ring R, finite group G, group algebra RG.

Commutative, unital ring R, finite group G, group algebra RG. Hopf algebra $(RG, \nabla, \eta, \Delta, \varepsilon, S)$ with $\Delta : g \mapsto g \otimes g$ and $\varepsilon : g \to 1$

Commutative, unital ring R, finite group G, group algebra RG. Hopf algebra $(RG, \nabla, \eta, \Delta, \varepsilon, S)$ with $\Delta \colon g \mapsto g \otimes g$ and $\varepsilon \colon g \to 1$ gives augmented magma $(RG, \mu, \Delta, \varepsilon)$ in $(\underline{R}, \otimes, R)$ with multiplication structure $\mu \colon RG \otimes RG \to RG^{\overline{*}}; g \otimes h \mapsto [\delta_{gh} \colon x \mapsto \delta_{x,gh}]$.

Commutative, unital ring R, finite group G, group algebra RG. Hopf algebra $(RG, \nabla, \eta, \Delta, \varepsilon, S)$ with $\Delta \colon g \mapsto g \otimes g$ and $\varepsilon \colon g \to 1$ gives augmented magma $(RG, \mu, \Delta, \varepsilon)$ in $(\underline{R}, \otimes, R)$ with multiplication structure $\mu \colon RG \otimes RG \to RG^{\overline{*}}; g \otimes h \mapsto [\delta_{gh} \colon x \mapsto \delta_{x,gh}]$.

Diagram chase for the augmented magma condition:

Commutative, unital ring R, finite group G, group algebra RG. Hopf algebra $(RG, \nabla, \eta, \Delta, \varepsilon, S)$ with $\Delta \colon g \mapsto g \otimes g$ and $\varepsilon \colon g \to 1$ gives augmented magma $(RG, \mu, \Delta, \varepsilon)$ in $(\underline{R}, \otimes, R)$ with multiplication structure $\mu \colon RG \otimes RG \to RG^{\overline{*}}; g \otimes h \mapsto [\delta_{gh} \colon x \mapsto \delta_{x,gh}]$.

Diagram chase for the augmented magma condition:

Remark: If $R = \mathbb{Z}$, then $\varepsilon \colon g \mapsto 1$ is the augmentation in $\mathbb{Z}G$.

Commutative, unital ring R, finite group G, group algebra RG. Hopf algebra $(RG, \nabla, \eta, \Delta, \varepsilon, S)$ with $\Delta \colon g \mapsto g \otimes g$ and $\varepsilon \colon g \to 1$ gives augmented magma $(RG, \mu, \Delta, \varepsilon)$ in $(\underline{R}, \otimes, R)$ with multiplication structure $\mu \colon RG \otimes RG \to RG^{\overline{*}}; g \otimes h \mapsto [\delta_{gh} \colon x \mapsto \delta_{x,gh}]$.

Diagram chase for the augmented magma condition:

Remark: If $R = \mathbb{Z}$, then $\varepsilon \colon g \mapsto 1$ is the augmentation in $\mathbb{Z}G$. In general, the augmentation need not be a counit for Δ .

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$,

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation,

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Hypermagma: $x \diamond y$ is nonempty for all x, y in A.

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Hypermagma: $x \diamond y$ is nonempty for all x, y in A.

Theorem: Set A with function $A \times A \rightarrow 2^A$; $(x,y) \mapsto x \diamond y$

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Hypermagma: $x \diamond y$ is nonempty for all x, y in A.

Theorem: Set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$ forms a hypermagma if and only if $(A, \mu, \Delta, \varepsilon)$ is an augmented magma in the category $(\mathbf{Rel}, \otimes, \top)$.

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Hypermagma: $x \diamond y$ is nonempty for all x, y in A.

Theorem: Set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$ forms a hypermagma if and only if $(A, \mu, \Delta, \varepsilon)$ is an augmented magma in the category $(\text{Rel}, \otimes, \top)$.

Magmas and hypermagmas treated uniformly, regardless of type!

Consider set A with function $A \times A \to 2^A$; $(x, y) \mapsto x \diamond y$.

In $(\text{Rel}, \otimes, \top)$, take augmentation $\varepsilon = \{(x, 0) \mid x \in A\}$, comultiplication $\Delta = \{(x, x \otimes x) \mid x \in A\}$, i.e., diagonal relation, and multiplication relation $\{(x \otimes y, z) \mid x, y, z \in A, z \in x \diamond y\}$.

Hypermagma: $x \diamond y$ is nonempty for all x, y in A.

Theorem: Set A with function $A \times A \to 2^A$; $(x,y) \mapsto x \diamond y$ forms a hypermagma if and only if $(A, \mu, \Delta, \varepsilon)$ is an augmented magma in the category $(\text{Rel}, \otimes, \top)$.

Magmas and hypermagmas treated uniformly, regardless of type!

In the magma case, $(A, \mu, \Delta, \varepsilon)$ lies in $(\mathbf{Set}, \otimes, \top)$.

Compact closed category $(V, \otimes, 1)$.

Compact closed category $(V, \otimes, 1)$.

Lemma: There is a natural isomorphism with components

$$\phi_{A,B,C} \colon \mathbf{V}(B \otimes A,C) \to \mathbf{V}(B,C \otimes A^*)$$

at objects A, B, C of V.

Compact closed category $(V, \otimes, 1)$.

Lemma: There is a natural isomorphism with components

$$\phi_{A,B,C} \colon \mathbf{V}(B \otimes A,C) \to \mathbf{V}(B,C \otimes A^*)$$

at objects A, B, C of \mathbf{V} .

For an object A of V, define

$$\tau_{13}$$
: $A_3 \otimes A_2 \otimes A_1 \rightarrow A_1 \otimes A_2 \otimes A_3$; $a_3 \otimes a_2 \otimes a_1 \mapsto a_1 \otimes a_2 \otimes a_3$

Compact closed category $(V, \otimes, 1)$.

Lemma: There is a natural isomorphism with components

$$\phi_{A,B,C} \colon \mathbf{V}(B \otimes A,C) \to \mathbf{V}(B,C \otimes A^*)$$

at objects A, B, C of \mathbf{V} .

For an object A of V, define

 $\tau_{13}\colon A_3\otimes A_2\otimes A_1\to A_1\otimes A_2\otimes A_3; a_3\otimes a_2\otimes a_1\mapsto a_1\otimes a_2\otimes a_3$ and

 τ_{23} : $A_1 \otimes A_3 \otimes A_2 \rightarrow A_1 \otimes A_2 \otimes A_3$; $a_1 \otimes a_3 \otimes a_2 \mapsto a_1 \otimes a_2 \otimes a_3$

Augmented quasigroups

Given an augmented magma $(A, \mu, \Delta, \varepsilon)$ in $(V, \otimes, 1)$,

Given an augmented magma $(A, \mu, \Delta, \varepsilon)$ in $(V, \otimes, 1)$,

have **right division (structure)** $\rho: A \otimes A \to A^*$ with

$$\rho = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{13}^* \phi_{A,A \otimes A,1}$$

Given an augmented magma $(A, \mu, \Delta, \varepsilon)$ in $(V, \otimes, 1)$,

have **right division** (structure) $\rho: A \otimes A \to A^*$ with

$$\rho = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{13}^* \phi_{A,A \otimes A,1}$$

and **left division (structure)** $\lambda: A \otimes A \to A^*$ with

$$\lambda = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{23}^* \phi_{A,A \otimes A,1}.$$

Given an augmented magma $(A, \mu, \Delta, \varepsilon)$ in $(V, \otimes, 1)$,

have **right division** (structure) $\rho: A \otimes A \to A^*$ with

$$\rho = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{13}^* \phi_{A,A \otimes A,1}$$

and **left division (structure)** $\lambda: A \otimes A \to A^*$ with

$$\lambda = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{23}^* \phi_{A,A \otimes A,1}.$$

 $(A, \mu, \rho, \lambda, \Delta, \varepsilon)$ is the (augmented) prequasigroup on $(A, \mu, \Delta, \varepsilon)$.

Given an augmented magma $(A, \mu, \Delta, \varepsilon)$ in $(V, \otimes, 1)$,

have **right division** (structure) $\rho: A \otimes A \to A^*$ with

$$\rho = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{13}^* \phi_{A,A \otimes A,1}$$

and **left division (structure)** $\lambda: A \otimes A \to A^*$ with

$$\lambda = \mu \phi_{A,A \otimes A,1}^{-1} \tau_{23}^* \phi_{A,A \otimes A,1}.$$

 $(A, \mu, \rho, \lambda, \Delta, \varepsilon)$ is the (augmented) prequasigroup on $(A, \mu, \Delta, \varepsilon)$.

Augmented quasigroup: Augmented magma $(A, \mu, \Delta, \varepsilon)$ for which $(A, \rho, \Delta, \varepsilon)$ and $(A, \lambda, \Delta, \varepsilon)$ are augmented magmas.

Group algebra ${\it RG}$ had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus
$$\mu\phi_{RG,RG\otimes RG,R}^{-1}$$
: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus
$$\mu\phi_{RG,RG\otimes RG,R}^{-1}$$
: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence
$$\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$$
: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus
$$\mu\phi_{RG,RG\otimes RG,R}^{-1}$$
: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence
$$\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$$
: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

so right division $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^* \phi_{RG,RG\otimes RG,R} = \rho \colon z \otimes y \mapsto \delta_{z/y}$.

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus $\mu\phi_{RG,RG\otimes RG,R}^{-1}$: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

so right division $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^* \phi_{RG,RG\otimes RG,R} = \rho \colon z \otimes y \mapsto \delta_{z/y}$.

Similarly, have left division structure λ : $x\otimes z\mapsto \delta_{x^{-1}z}=\delta_{x\backslash z}$.

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus
$$\mu\phi_{RG,RG\otimes RG,R}^{-1}$$
: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence
$$\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$$
: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

so right division $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^* \phi_{RG,RG\otimes RG,R} = \rho \colon z \otimes y \mapsto \delta_{z/y}$.

Similarly, have left division structure λ : $x\otimes z\mapsto \delta_{x^{-1}z}=\delta_{x\backslash z}$.

Associativity not used for the augmented magma condition on μ ,

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus $\mu\phi_{RG,RG\otimes RG,R}^{-1}$: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

so right division $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^* \phi_{RG,RG\otimes RG,R} = \rho \colon z \otimes y \mapsto \delta_{z/y}$.

Similarly, have left division structure λ : $x\otimes z\mapsto \delta_{x^{-1}z}=\delta_{x\backslash z}$.

Associativity not used for the augmented magma condition on μ , so conclude that $(RG, \mu, \Delta, \varepsilon)$ is an augmented quasigroup.

Group algebra RG had multiplication structure

$$\mu \colon RG \otimes RG \to RG^*; x \otimes y \mapsto [\delta_{xy} \colon z \mapsto \delta_{z,xy}].$$

Thus
$$\mu\phi_{RG,RG\otimes RG,R}^{-1}$$
: $x\otimes y\otimes z\mapsto \delta_{z,xy}$,

whence
$$\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^*$$
: $z \otimes y \otimes x \mapsto \delta_{z,xy} = \delta_{x,zy^{-1}} = \delta_{x,z/y}$.

so right division $\mu \phi_{RG,RG\otimes RG,R}^{-1} \tau_{13}^* \phi_{RG,RG\otimes RG,R} = \rho \colon z \otimes y \mapsto \delta_{z/y}$.

Similarly, have left division structure λ : $x\otimes z\mapsto \delta_{x^{-1}z}=\delta_{x\backslash z}$.

Associativity not used for the augmented magma condition on μ , so conclude that $(RG, \mu, \Delta, \varepsilon)$ is an augmented quasigroup.

Works equally well for a finite quasigroup $(G, \cdot, /, \setminus)$.

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A, z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A$, $z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

Hypergroup if ⋄ is associative [F. Marty, 1936].

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A$, $z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

Hypergroup if ⋄ is associative [F. Marty, 1936].

Theorem: Marty quasigroups \equiv augmented quasigroups in $(\mathbf{Rel}, \otimes, \top)$.

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A$, $z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

Hypergroup if ⋄ is associative [F. Marty, 1936].

Theorem: Marty quasigroups \equiv augmented quasigroups in (Rel, \otimes, \top) .

Corollary: Heyting algebra (A, \land, \rightarrow) , meet semilattice with

$$x \wedge y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightarrow z$$

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A$, $z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

Hypergroup if ⋄ is associative [F. Marty, 1936].

Theorem: Marty quasigroups \equiv augmented quasigroups in (Rel, \otimes, \top) .

Corollary: Heyting algebra (A, \land, \rightarrow) , meet semilattice with

$$x \wedge y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightarrow z$$

is a Marty quasigroup or augmented quasigroup in (Rel, \otimes, \top)

 $(A, \diamond, \rightthreetimes, \leftthreetimes)$ with hypermagma structures (A, \diamond) , (A, \rightthreetimes) , and (A, \leftthreetimes) is a **Marty quasigroup** iff $\forall x, y, z \in A$, $z \in x \diamond y \Leftrightarrow x \in z \rightthreetimes y \Leftrightarrow y \in x \leftthreetimes z$.

Hypergroup if ⋄ is associative [F. Marty, 1936].

Theorem: Marty quasigroups \equiv augmented quasigroups in (Rel, \otimes, \top) .

Corollary: Heyting algebra (A, \land, \rightarrow) , meet semilattice with

$$x \wedge y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightarrow z$$

is a Marty quasigroup or augmented quasigroup in (Rel, \otimes, \top)

with
$$x \diamond y = \uparrow (x \wedge y), \quad z \wedge y = \downarrow (y \rightarrow z), \quad x \wedge z = \downarrow (x \rightarrow z).$$

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

Augmented comagma (A, Δ, ε) is **multisetlike** if $A = NA_0$.

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

Augmented comagma (A, Δ, ε) is **multisetlike** if $A = NA_0$.

[Note: if $A \neq \{0\}$ and $\varepsilon = 0$, then (A, Δ, ε) is not multisetlike.]

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

Augmented comagma (A, Δ, ε) is **multisetlike** if $A = NA_0$.

[Note: if $A \neq \{0\}$ and $\varepsilon = 0$, then (A, Δ, ε) is not multisetlike.]

Then have **multiset** $\varepsilon: X \to \mathbb{N}^+$; $x \mapsto w(x)$,

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

Augmented comagma (A, Δ, ε) is **multisetlike** if $A = NA_0$.

[Note: if $A \neq \{0\}$ and $\varepsilon = 0$, then (A, Δ, ε) is not multisetlike.]

Then have multiset $\varepsilon: X \to \mathbb{N}^+$; $x \mapsto w(x)$, setlike if $\varepsilon: X \to \{1\}$.

For $A = \mathbb{N}X$ in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, augmented comagma (A, Δ, ε) with diagonal $\Delta : x \to x \otimes x$ and augmentation $\varepsilon : A \to \mathbb{N}$.

Set $A_0 = \{a \in A \mid a\Delta = a \otimes a \text{ and } a\varepsilon \neq 0\}$ of **grouplike** elements.

Augmented comagma (A, Δ, ε) is **multisetlike** if $A = NA_0$.

[Note: if $A \neq \{0\}$ and $\varepsilon = 0$, then (A, Δ, ε) is not multisetlike.]

Then have **multiset** $\varepsilon: X \to \mathbb{N}^+$; $x \mapsto w(x)$, **setlike** if $\varepsilon: X \to \{1\}$.

Tare weight |X|, gross weight $\sum_{x \in X} w(x)$.

In $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, multisetlike object $(\underline{N}X, \Delta, \varepsilon_X)$ lifts to, or is covered by, setlike object $(\underline{N}Q, \Delta, \varepsilon_Q)$ if there is a surjective covering function $f: Q \to X$ with $\varepsilon_X = \sum_{x \in X} \Big(\sum_{q \in Q} qf \delta_x\Big) \delta_x$.

In $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, multisetlike object $(\underline{N}X, \Delta, \varepsilon_X)$ lifts to, or is covered by, setlike object $(\underline{N}Q, \Delta, \varepsilon_Q)$ if there is a surjective covering function

$$f \colon Q \to X \text{ with } \varepsilon_X = \sum_{x \in X} \left(\sum_{q \in Q} qf \delta_x \right) \delta_x.$$

In other words, $\varepsilon_X \colon X \to \mathbb{N}^+$; $x \mapsto |f^{-1}\{x\}|$.

In $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, multisetlike object $(\underline{N}X, \Delta, \varepsilon_X)$ lifts to, or is covered by, setlike object $(\underline{N}Q, \Delta, \varepsilon_Q)$ if there is a surjective covering function $f: Q \to X$ with $\varepsilon_X = \sum_{x \in X} \Big(\sum_{q \in Q} qf \delta_x\Big) \delta_x$.

In other words, $\varepsilon_X \colon X \to \mathbb{N}^+$; $x \mapsto |f^{-1}\{x\}|$.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:

In $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, multisetlike object $(\underline{N}X, \Delta, \varepsilon_X)$ lifts to, or is covered by, setlike object $(\underline{N}Q, \Delta, \varepsilon_Q)$ if there is a surjective covering function $f: Q \to X$ with $\varepsilon_X = \sum_{x \in X} \Big(\sum_{q \in Q} qf \delta_x\Big) \delta_x$.

In other words, $\varepsilon_X \colon X \to \mathbb{N}^+$; $x \mapsto |f^{-1}\{x\}|$.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:

A multisetlike augmented quasigroup $(\mathbb{N}X, \mu_X, \Delta_X, \varepsilon_X)$ of gross weight W in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$

In $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$, multisetlike object $(\underline{N}X, \Delta, \varepsilon_X)$ lifts to, or is covered by, setlike object $(\underline{N}Q, \Delta, \varepsilon_Q)$ if there is a surjective covering function $f: Q \to X$ with $\varepsilon_X = \sum_{x \in X} \Big(\sum_{q \in Q} qf \delta_x\Big) \delta_x$.

In other words, $\varepsilon_X \colon X \to \mathbb{N}^+$; $x \mapsto |f^{-1}\{x\}|$.

Lifting Theorem [Hilton, Wojciechowski (1993); S. (2018)]:

A multisetlike augmented quasigroup $(\mathbb{N}X, \mu_X, \Delta_X, \varepsilon_X)$ of gross weight W in $(\underline{\mathbb{N}}, \otimes, \mathbb{N})$

lifts to a setlike quasigroup algebra $(\mathbb{N}Q, \mu_Q, \Delta_Q, \varepsilon_Q)$ with |Q| = W.

The dual group of a finite abelian group G . . .

... is the group \widetilde{G} of homomorphisms $\chi\colon G\to S^1$ from G to the circle group $S^1=\{z\in\mathbb{C}\mid z\overline{z}=1\}.$

... is the group \widetilde{G} of homomorphisms $\chi \colon G \to S^1$ from G to the circle group $S^1 = \{z \in \mathbb{C} \mid z\overline{z} = 1\}$.

Example: Group C_3 with character table $egin{array}{c|c} C_3 & 0 & 1 & 2 \\ \hline \chi_0 & 1 & 1 & 1 \\ \hline \chi_1 & 1 & \omega & \omega^2 \\ \hline \chi_2 & 1 & \omega^2 & \omega \\ \hline \end{array}$

... is the group \widetilde{G} of homomorphisms $\chi\colon G\to S^1$ from G to the circle group $S^1=\{z\in\mathbb{C}\mid z\overline{z}=1\}.$

Example: Group C_3 with character table

	C_3	0	1	2
	χ_0	1	1	1
	χ_1	1	ω	ω^2
	χ_2	1	ω^2	ω

$$\begin{array}{c|ccccc} & & \chi_0 & \chi_1 & \chi_2 \\ \hline \chi_0 & \chi_0 & \chi_1 & \chi_2 \\ \chi_1 & \chi_1 & \chi_2 & \chi_0 \\ \chi_2 & \chi_2 & \chi_0 & \chi_1 \\ \end{array}$$

... is the group \widetilde{G} of homomorphisms $\chi \colon G \to S^1$ from G to the circle group $S^1 = \{z \in \mathbb{C} \mid z\overline{z} = 1\}$.

Example: Group C_3 with character table

... is a quasigroup lift \widetilde{G} of the group's character algebra $\mathbb{N}G^{\vee}$ with $\varepsilon_{G^{\vee}} \colon \chi_i \mapsto \chi_i(1)^2$ and $\mu_{G^{\vee}} \colon \chi_i \otimes \chi_j \mapsto [\chi_k \mapsto \chi_i(1)\chi_j(1)\chi_k(1)\langle \chi_i \otimes \chi_j \mid \chi_k \rangle]$

... is a quasigroup lift \widetilde{G} of the group's character algebra $\mathbb{N}G^{\vee}$ with $\varepsilon_{G^{\vee}} \colon \chi_i \mapsto \chi_i(1)^2$ and $\mu_{G^{\vee}} \colon \chi_i \otimes \chi_j \mapsto [\chi_k \mapsto \chi_i(1)\chi_j(1)\chi_k(1)\langle \chi_i \otimes \chi_j \mid \chi_k \rangle]$

Example: Group S_3 with character table $egin{array}{c|c} S_3 & 1 & t & c \\ \hline \chi_1 & 1 & 1 & 1 \\ \chi_2 & 1 & -1 & 1 \\ \theta & 2 & 0 & -1 \\ \hline \end{array}$

... is a quasigroup lift \widetilde{G} of the group's character algebra $\mathbb{N}G^{\vee}$ with $\varepsilon_{G^{\vee}} \colon \chi_i \mapsto \chi_i(1)^2$ and $\mu_{G^{\vee}} \colon \chi_i \otimes \chi_j \mapsto [\chi_k \mapsto \chi_i(1)\chi_j(1)\chi_k(1)\langle \chi_i \otimes \chi_j \mid \chi_k \rangle]$

Example: Group S_3 with character table

... is a quasigroup lift \widetilde{G} of the group's character algebra $\mathbb{N}G^{\vee}$ with $\varepsilon_{G^{\vee}} \colon \chi_i \mapsto \chi_i(1)^2$ and $\mu_{G^{\vee}} \colon \chi_i \otimes \chi_j \mapsto [\chi_k \mapsto \chi_i(1)\chi_j(1)\chi_k(1)\langle \chi_i \otimes \chi_j \mid \chi_k \rangle]$

 S_3

 $\chi_1 \mid 1 \mid 1 \mid 1$

Example: Group S_3 with character table

... is a quasigroup lift \widetilde{G} of the group's character algebra $\mathbb{N}G^{\vee}$ with $\varepsilon_{G^{\vee}} \colon \chi_i \mapsto \chi_i(1)^2$ and $\mu_{G^{\vee}} \colon \chi_i \otimes \chi_j \mapsto [\chi_k \mapsto \chi_i(1)\chi_j(1)\chi_k(1)\langle \chi_i \otimes \chi_j \mid \chi_k \rangle]$

Example: Group S_3 with character table $egin{array}{c|c} S_3 & 1 & t & c \\ \hline \chi_1 & 1 & 1 & 1 \\ \hline \chi_2 & 1 & -1 & 1 \\ \theta & 2 & 0 & -1 \\ \hline \end{array}$

E.g.,
$$\theta(1)^3 \langle \theta \otimes \theta | \theta \rangle = 8 = |\{\theta_1, \theta_2\}^2 \cup \{\theta_3, \theta_4\}^2|$$
.

