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Abstract

Starting with Ω-sets, we deal with generalizations of groupoids,
quasigroups and related structures. Ω is a complete lattice, and an
Ω-set (A,E ) is a nonempty set equipped with a symmetric and
transitive map E : A2 → Ω as a generalization of the classical
equality.
Further, the set A is equipped with operations, which makes it a
classical basic structure A: a groupoid A = (A, ·), or an algebra
with several at most binary operations.In this case Ω-valued
equality E is supposed to be accordingly compatible with these
operations.
Hence, we investigate Ω-groupoids and similar Ω-structures
denoted by (A,E ).
Identities and polynomial formulas with equality are formulated as
particular lattice formulas in which the equality sign is replaced by
E . Then an identity (formula) holds in (A,E ) if the corresponding
lattice formula is satisfied in Ω.
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In particular, an Ω-groupoid is an Ω-quasigroup if the equations
a · x = b and y · a = b have unique solutions with respect to E .

A connection to classical quasigroups is that an Ω-groupoid (A,E )
is an Ω-quasigroup if and only if the quotient subgroupoids over
the congruences obtained by a special decomposition of the
Ω-valued equality E , are classical quasigroups.
We prove the equivalence of Ω-quasigroups with Ω-equasigroups in
which the basic structure possesses three binary operations and the
classical equasigroup identities are supposed to hold as particular
lattice formulas.
We also investigate Ω-groupoids with a unit. We prove that a unit
is unique if the language contains a nullary operation. Otherwise,
an Ω-groupoid might contain several units, which are equal up to
the Ω-valued equality E .
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Consequently, Ω-groups can be naturally defined as Ω-groupoids,
but also as Ω-algebras in the language with three operations. In
both cases the mentioned quotient substructures are classical
groups, but the obtained versions of Ω-groups are not equivalent.

Still, using the Axiom of Choice, we were able to prove that an
Ω-loop having a nullary operation in the language and fulfilling
associativity with respect to E is an Ω-group.
Finally, we deal with (unique) solutions of equations a · x = b and
y · a = b in the framework of Ω-quasigroups and Ω-groups. For an
Ω-quasigroup (Ω-group) (A,E ) we obtain solutions with respect
(up to) the Ω-equality E - a kind of approximate solutions.
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Quasigroups - notation

Two standard approaches to quasigroups are denoted as follows:

A quasigroup as a groupoid (Q, · ): for all a, b ∈ Q, both linear
equations: a · x = b and y · a = b are uniquely solvable for
x , y .

Quasigroups as algebras with three binary operations · , \ , /
(called multiplication, left division and right division respectively):
An equasigroup: an algebra (Q, · , \ , / ) which satisfies the
following identities:

Q1 : y = x · (x\y);
Q2 : y = x\(x · y);
Q3 : y = (y/x) · x ;
Q4 : y = (y · x)/x .
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If (Q, · ) is a quasigroup, then (Q, · , \ , / ) is an equasigroup,
where the additional binary operations \ and / are defined by:

a\b = c iff b = a · c and a/b = c iff a = c · b.

A quasigroup (Q, · ) with an identity element e is a loop:
for every x ∈ Q, e · x = x · e = x .
We consider a loop to be a structure (Q, · , e) with the nullary
operation in the language, corresponding to the identity element.
Alternatively, an equasigroup is an eloop if for all x , y , x\x = y/y ;
in this approach x\x serves as the identity element.

Finally, a group is an associative loop.
Here we consider groups
– in the language with a binary operation · , unary operation −1

and a constant e, denoted by (G , · ,−1 , e) and
– as a groupoid (G , · ), i.e., in the language with a single binary
operation · .
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B. Šešelja Ω-groupoids and Ω-quasigroups



If (Q, · ) is a quasigroup, then (Q, · , \ , / ) is an equasigroup,
where the additional binary operations \ and / are defined by:

a\b = c iff b = a · c and a/b = c iff a = c · b.

A quasigroup (Q, · ) with an identity element e is a loop:
for every x ∈ Q, e · x = x · e = x .
We consider a loop to be a structure (Q, · , e) with the nullary
operation in the language, corresponding to the identity element.
Alternatively, an equasigroup is an eloop if for all x , y , x\x = y/y ;
in this approach x\x serves as the identity element.

Finally, a group is an associative loop.
Here we consider groups
– in the language with a binary operation · , unary operation −1

and a constant e, denoted by (G , · ,−1 , e) and
– as a groupoid (G , · ), i.e., in the language with a single binary
operation · .
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Lattice-valued functions

Lattice-valued, Ω-valued functions are mappings from a
non-empty set X (domain) into a complete lattice Ω (co-domain).
Let Ω be a complete lattice, µ : X → Ω an Ω-valued function on a
set X and p ∈ Ω. A p-cut, or a cut of µ is a subset µp of X
defined by

µp = {x ∈ X | µ(x) > p} = µ−1(↑p).

The main properties of cuts:

p 6 q implies µq ⊆ µp.

⋂
(µp | p ∈ M ⊆ P) = µ∨ p.

The collection µΩ of cuts of an Ω-valued function µ : X → Ω is a
closure system, a complete lattice under the set-inclusion,
consisting of subsets of X closed under set-intersections,
containing also X .
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Ω-algebras; identities

An Ω-set is a pair (Q,E ), where Q is a nonempty set and E is an
Ω-valued equality, i.e., a function E : Q2 → Ω (Ω is a complete
lattice) fulfilling:
E (a, b) = E (b, a) (symmetry),
E (a, b) ∧ E (b, c) 6 E (a, c) (transitivity) and
R(a, b) = R(a, a) implies a = b. (separation).

A pair Q = (Q,E ) is an Ω-algebra if Q = (Q,F ) is an algebra, in
our case with at most binary operations, (Q,E ) is an Ω-set and E
is compatible with the operations in F :
For every binary operation ∗ and unary ′ in F , for all
a1, a2, b1, b2 ∈ Q, and for every constant (nullary operation) c ∈ F

E (a1, b1) ∧ E (a2, b2) 6 E (a1 ∗ a2, b1 ∗ b2);

E (a1, b1) 6 E (a′1, b
′
1)

and E (c, c) = 1.

Q is the underlying, basic algebra of Q.
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B. Šešelja Ω-groupoids and Ω-quasigroups



Ω-algebras; identities
An Ω-set is a pair (Q,E ), where Q is a nonempty set and E is an
Ω-valued equality, i.e., a function E : Q2 → Ω (Ω is a complete
lattice) fulfilling:
E (a, b) = E (b, a) (symmetry),

E (a, b) ∧ E (b, c) 6 E (a, c) (transitivity) and
R(a, b) = R(a, a) implies a = b. (separation).

A pair Q = (Q,E ) is an Ω-algebra if Q = (Q,F ) is an algebra, in
our case with at most binary operations, (Q,E ) is an Ω-set and E
is compatible with the operations in F :
For every binary operation ∗ and unary ′ in F , for all
a1, a2, b1, b2 ∈ Q, and for every constant (nullary operation) c ∈ F

E (a1, b1) ∧ E (a2, b2) 6 E (a1 ∗ a2, b1 ∗ b2);

E (a1, b1) 6 E (a′1, b
′
1)

and E (c, c) = 1.

Q is the underlying, basic algebra of Q.
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For an Ω-algebra (Q,E ), we denote by µ the Ω-valued function on
Q, defined by

µ(x) := E (x , x).

µ is the Ω-domain of E , and for p ∈ Ω, µp ⊆ Q, defined as

µp = {x ∈ X | µ(x) > p}

is a cut of µ.

Lemma

If (Q,E ) is an Ω-algebra and p ∈ Ω, then the cut µp is a
subalgebra of Q and the cut Ep is a congruence relation on µp.
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Identities

Let u(x1, . . . , xn) = v(x1, . . . , xn) (briefly u = v) be an identity in
the type of an Ω-algebra (Q,E ). We assume, as usual, that
variables appearing in terms u and v are from x1, . . . , xn Then,
(Q,E ) satisfies identity u = v if the following condition is
fulfilled:

n∧
i=1

µ(ai ) 6 E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ Q.

Theorem

Let (Q,E ) be an Ω-algebra, and F a set of identities in the
language of Q. Then, (Q,E ) satisfies all the identities in F if and
only if for every p ∈ Ω the quotient algebra µp/Ep satisfies the
same identities.
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Ω-groupoid, Ω-quasigroup

An Ω-groupoid is an Ω-algebra (Q,E ), where Q = (Q, ·) is a
groupoid.

Let (Q,E ) be an Ω-groupoid.
Each of the formulas a · x = b and y · a = b, a, b ∈ Q, x , y –
variables, is a linear equation over (Q,E ).

We say that an equation a · x = b is solvable over (Q,E ) if there
is c ∈ Q such that

µ(a) ∧ µ(b) 6 µ(c) ∧ E (a · c , b).

Analogously, an equation y · a = b is solvable over (Q,E ) if there
is d ∈ Q such that

µ(a) ∧ µ(b) 6 µ(d) ∧ E (d · a, b).
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Elements c and d are solutions of equations a · x = b and
y · a = b, respectively in (Q,E ).

Each of the above equations is E -uniquely solvable over (Q,E )if
the following hold:
If c and c1 are solutions of the equation a ∗ x = b over (Q,E ), then

µ(a) ∧ µ(b) 6 E (c , c1).

Analogously, if d and d1 are solutions of the equation y ∗ a = b
over (Q,E ), then

µ(a) ∧ µ(b) 6 E (d , d1).

B. Šešelja Ω-groupoids and Ω-quasigroups



Elements c and d are solutions of equations a · x = b and
y · a = b, respectively in (Q,E ).

Each of the above equations is E -uniquely solvable over (Q,E )if
the following hold:

If c and c1 are solutions of the equation a ∗ x = b over (Q,E ), then

µ(a) ∧ µ(b) 6 E (c , c1).

Analogously, if d and d1 are solutions of the equation y ∗ a = b
over (Q,E ), then

µ(a) ∧ µ(b) 6 E (d , d1).
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B. Šešelja Ω-groupoids and Ω-quasigroups



Elements c and d are solutions of equations a · x = b and
y · a = b, respectively in (Q,E ).

Each of the above equations is E -uniquely solvable over (Q,E )if
the following hold:
If c and c1 are solutions of the equation a ∗ x = b over (Q,E ), then

µ(a) ∧ µ(b) 6 E (c , c1).

Analogously, if d and d1 are solutions of the equation y ∗ a = b
over (Q,E ), then

µ(a) ∧ µ(b) 6 E (d , d1).
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Hence, an E -uniquely solvable equation may have several solutions.

All these solutions are equal up to the Ω-equality E . More
precisely, we have the following.

Theorem

Let (Q,E ) be an Ω-groupoid. If equations a · x = b and y · a = b,
are E-uniquely solvable over (Q,E ) for all a, b ∈ Q, then for every
p ∈ Ω the quotient groupoid µp/Ep is a quasigroup.
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B. Šešelja Ω-groupoids and Ω-quasigroups



Hence, an E -uniquely solvable equation may have several solutions.
All these solutions are equal up to the Ω-equality E . More
precisely, we have the following.

Theorem

Let (Q,E ) be an Ω-groupoid. If equations a · x = b and y · a = b,
are E-uniquely solvable over (Q,E ) for all a, b ∈ Q, then for every
p ∈ Ω the quotient groupoid µp/Ep is a quasigroup.
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We say that an Ω-groupoid (Q,E ) is an Ω-quasigroup, if every
equation of the form a · x = b or y · a = b is E -uniquely solvable
over (Q,E ).

Theorem

Let (Q,E ) be an Ω-groupoid. If for all a, b ∈ Q and for every
p 6 µ(a)∧ µ(b) the quotient groupoid µp/Ep is a quasigroup, then
(Q,E ) is an Ω-quasigroup.
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Ω-equasigroup

Let Q = (Q, ·, \, /) be an algebra in the language with three binary
operations, Ω a complete lattice and E : Q2 → Ω an Ω-valued
compatible equality over Q.
Then, (Q,E ) is an Ω-equasigroup, if identities Q1, . . . ,Q4 hold:
Q1 : y = x · (x\y);
Q2 : y = x\(x · y);
Q3 : y = (y/x) · x ;
Q4 : y = (y · x)/x .

This means that the following formulas should be satisfied, where
µ : Q → Ω is defined by µ(x) = E (x , x):
QE1 : µ(x) ∧ µ(y) 6 E (y , x · (x\y));
QE2 : µ(x) ∧ µ(y) 6 E (y , x\(x · y));
QE3 : µ(x) ∧ µ(y) 6 E (y , (y/x) · x);
QE4 : µ(x) ∧ µ(y) 6 E (y , (y · x)/x).
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B. Šešelja Ω-groupoids and Ω-quasigroups



Ω-equasigroup

Let Q = (Q, ·, \, /) be an algebra in the language with three binary
operations, Ω a complete lattice and E : Q2 → Ω an Ω-valued
compatible equality over Q.
Then, (Q,E ) is an Ω-equasigroup, if identities Q1, . . . ,Q4 hold:
Q1 : y = x · (x\y);
Q2 : y = x\(x · y);
Q3 : y = (y/x) · x ;
Q4 : y = (y · x)/x .

This means that the following formulas should be satisfied, where
µ : Q → Ω is defined by µ(x) = E (x , x):

QE1 : µ(x) ∧ µ(y) 6 E (y , x · (x\y));
QE2 : µ(x) ∧ µ(y) 6 E (y , x\(x · y));
QE3 : µ(x) ∧ µ(y) 6 E (y , (y/x) · x);
QE4 : µ(x) ∧ µ(y) 6 E (y , (y · x)/x).
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Theorem

If ((Q, ·, \, /),E ) is an Ω-equasigroup, then for every p ∈ Ω, the
quotient structure µp/Ep is a classical equasigroup.

Corollary

If ((Q, ·, \, /),E ) is an Ω-equasigroup, then ((Q, ·),E ) is an
Ω-quasigroup.

The converse follows by the Axiom of Choice (AC).

Theorem

Let ((Q, ·),E ) be an Ω-groupoid which is an Ω-quasigroup. Then
the structure ((Q, · , \ , / ),E ) is an Ω-equasigroup.
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Example

· a b c d e

a b c a a e
b a b c d e
c c a b b e
d d a b b e
e e e e e a

Table 1

Let (Q, · ) be a groupoid given in Table 1.

This is not a quasigroup, e.g., equation a · x = d does not have a
solution in Q.
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The lattice Ω is given by the diagram in Figure 1:

u
�

�
��
@
@
@@�

�
��
@

@
@@u
u

u
@
@
@@u

u
�
�

��@
@

@@
u

u

1

q p

r
u

w v

0Lattice Ω

Figure 1
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An Ω-valued equality is presented by Table 2.

E a b c d e

a 1 p p r v
b p 1 p r v
c p p 1 q v
d r r q q 0
e v v v 0 u

Table 2

The function µ : Q → Ω (µ(x) = E (x , x) for all x ∈ Q):

µ =

(
a b c d e
1 1 1 q u

)
.

((Q, · ),E ) is an Ω-groupoid.
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The subgroupoids of ((Q, · ),E ), which are cuts of µ:

µ1 = µp = {a, b, c},
µq = µr = µw = {a, b, c , d},
µu = µv = {a, b, c , e},
µ0 = {a, b, c , d , e}.

The quotient groupoids over the corresponding cuts of E are the
following:
µ1/E1 = {{a}, {b}, {c}},
µp/Ep = {{a, b, c}},
µq/Eq = {{a}, {b}, {c, d}},
µr/Er = µw/Ew = {{a, b, c , d}},
µu/Eu = {{a, b, c}, {e}},
µv/Ev = {{a, b, c, e}},
µ0/E0 = {{a, b, c, d , e}}.
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B. Šešelja Ω-groupoids and Ω-quasigroups



The subgroupoids of ((Q, · ),E ), which are cuts of µ:
µ1 = µp = {a, b, c},
µq = µr = µw = {a, b, c , d},
µu = µv = {a, b, c , e},
µ0 = {a, b, c , d , e}.

The quotient groupoids over the corresponding cuts of E are the
following:

µ1/E1 = {{a}, {b}, {c}},
µp/Ep = {{a, b, c}},
µq/Eq = {{a}, {b}, {c, d}},
µr/Er = µw/Ew = {{a, b, c , d}},
µu/Eu = {{a, b, c}, {e}},
µv/Ev = {{a, b, c, e}},
µ0/E0 = {{a, b, c, d , e}}.
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All these quotient structures are quasigroups, hence the starting
Ω-groupoid is an Ω-quasigroup, and every linear equation is
E -uniquely solvable over it.

E.g., the mentioned equation a · x = d which does not have a
classical solution in Q, possesses a solution with respect to
Ω-valued equality E .
Indeed, due to µ(a) ∧ µ(d) = q, this solution is element b, since
the class X = {b} is the unique solution of the equation
[a]Eq · X = [d ]Eq over the quasigroup µq/Eq (observe that
[d ]Eq = {c , d}).

µ(a)∧µ(d) = q 6 µ(b)∧E (a · b, d) = µ(b)∧E (c , d) = 1∧ q = q.

Hence, a · b and d are E -equal with grade q.
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B. Šešelja Ω-groupoids and Ω-quasigroups



All these quotient structures are quasigroups, hence the starting
Ω-groupoid is an Ω-quasigroup, and every linear equation is
E -uniquely solvable over it.

E.g., the mentioned equation a · x = d which does not have a
classical solution in Q, possesses a solution with respect to
Ω-valued equality E .
Indeed, due to µ(a) ∧ µ(d) = q, this solution is element b, since
the class X = {b} is the unique solution of the equation
[a]Eq · X = [d ]Eq over the quasigroup µq/Eq (observe that
[d ]Eq = {c , d}).

µ(a)∧µ(d) = q 6 µ(b)∧E (a · b, d) = µ(b)∧E (c , d) = 1∧ q = q.

Hence, a · b and d are E -equal with grade q.
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Ω-loop and Ω-group

An Ω-algebra (G,E ) is an Ω-group, if the underlying algebra
G = (G , ·, −1, e) has a binary operation · , a unary operation −1,
a constant e, and the following formulas hold:

LG1 : µ(x) ∧ µ(y) ∧ µ(z) 6 E (x · (y · z), (x · y) · z);
LG2 : µ(x) 6 E (x · e, x), µ(x) 6 E (e · x , x);
LG3 : µ(x) 6 E (x · x−1, e), µ(x) 6 E (x−1 · x , e).

Theorem

An Ω-algebra ((G , ·, −1, e),E ) is an Ω-group if and only if for
every p ∈ Ω, the quotient cut-subalgebra µp/Ep is a group.
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An O-loop is an Ω-algebra (Q,E ), where Q = (Q, ·, e) is a
structure with a binary operation · and a constant e, ((Q, · ),E )
is an Ω-quasigroup, E (e, e) = 1 and the formula LG2 holds.

An Ω-semigroup is an Ω-algebra ((Q, · ),E ) where (Q, · ) is a
groupoid and the formula LG1 holds.

The proof of the following theorem depends on the Axiom of
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B. Šešelja Ω-groupoids and Ω-quasigroups



An O-loop is an Ω-algebra (Q,E ), where Q = (Q, ·, e) is a
structure with a binary operation · and a constant e, ((Q, · ),E )
is an Ω-quasigroup, E (e, e) = 1 and the formula LG2 holds.

An Ω-semigroup is an Ω-algebra ((Q, · ),E ) where (Q, · ) is a
groupoid and the formula LG1 holds.

The proof of the following theorem depends on the Axiom of
Choice (AC).

Theorem

Let ((Q, ·, e),E ) be an Ω-algebra. There is a unary operation −1

on Q such that ((Q, ·, −1, e),E ) is an Ω-group if and only if
((Q, ·),E ) is an Ω-semigroup and ((Q, ·, e),E ) an Ω-loop.
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Neutral elements in Ω-groupoids

Let ((Q, ·),E ), be an an Ω-groupoid and e ∈ Q, such that for
every x ∈ Q
µ(x) 6 E (x · e, x) ∧ E (e · x , x).

Then e is a neutral element in (Q,E ).

If e is a neutral element in an Ω-groupoid ((Q, ·),E ), then for
every x ∈ G, µ(x) 6 µ(e).
In addition, e is unique and this is also the neutral element in the
underlying groupoid (Q, ·).
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B. Šešelja Ω-groupoids and Ω-quasigroups



Neutral elements in Ω-groupoids

Let ((Q, ·),E ), be an an Ω-groupoid and e ∈ Q, such that for
every x ∈ Q
µ(x) 6 E (x · e, x) ∧ E (e · x , x).

Then e is a neutral element in (Q,E ).

If e is a neutral element in an Ω-groupoid ((Q, ·),E ), then for
every x ∈ G, µ(x) 6 µ(e).
In addition, e is unique and this is also the neutral element in the
underlying groupoid (Q, ·).

B. Šešelja Ω-groupoids and Ω-quasigroups



Neutral elements in Ω-groupoids

Let ((Q, ·),E ), be an an Ω-groupoid and e ∈ Q, such that for
every x ∈ Q
µ(x) 6 E (x · e, x) ∧ E (e · x , x).

Then e is a neutral element in (Q,E ).

If e is a neutral element in an Ω-groupoid ((Q, ·),E ), then for
every x ∈ G, µ(x) 6 µ(e).
In addition, e is unique and this is also the neutral element in the
underlying groupoid (Q, ·).
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Let Q = (Q,E ) be an Ω-groupoid, where the underlying algebra is
a groupoid Q = (Q, ∗).

Then an e ∈ Q is a weak neutral element in Q if for every x ∈ Q,

µ(e) ∧ µ(x) 6 E (x ∗ e, x) ∧ E (e ∗ x , x).

Proposition

Let e be a weak neutral element in an Ω-groupoid Q = (Q,E ),
where Q = (Q, ∗) is a classical groupoid. Then for every p ∈ Ω
such that e ∈ µp, the class [e]Ep is a neutral element in the
groupoid µp/Ep.

Clearly, the class [e]Ep is a unique neutral element in the groupoid
µp/Ep.

Proposition

A weak neutral element e in an Ω-groupoid Q = (Q,E ) is an
idempotent element in the underlying groupoid Q.
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A weak neutral element in an Ω-groupoid is not in general the
neutral element in the underlying groupoid.

In addition it is not
necessarily unique.

Proposition

If e1 and e2 are weak neutral elements in an Ω-groupoid Q, then

E (e1, e2) = µ(e1) ∧ µ(e2).

In addition, if e1 6= e2, then µ(e1) and µ(e2) are not comparable
elements of Ω.
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For an Ω-groupoid ((Q, ∗),E ) we define

N := {e ∈ Q | e is a weak neutral element in Q} and
µ(N) := {µ(e), e ∈ N}.
An Ω-groupoid Q = ((Q, ∗),E ) in which N 6= ∅ is a weak
Ω-group if the following hold:

(j) Q is associative: for all x , y , z ∈ Q
µ(x) ∧ µ(y) ∧ µ(z) 6 E (x ∗ (y ∗ z), (x ∗ y) ∗ z);

(jj) If e is a weak neutral element of Q, then for every x ∈ Q
there is x−1e ∈ Q such that
µ(e) ∧ µ(x) 6 µ(x−1e ) ∧ E (x ∗ x−1e , e) ∧ E (x−1e ∗ x , e), and

(jjj) µ−1(↓µ(N)) = Q.
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Theorem

Let Q = (Q,E ) be a weak Ω-group. Then for every p ∈ Ω, µp/Ep

is a group in which the neutral class is [e]Ep for an e ∈ N.

Theorem

Let Q = (Q,E ) be an Ω-groupoid with a nonempty set N of weak
neutral elements. If every nonempty quotient µp/Ep, p ∈ Ω, is a
group whose neutral class is [e]Ep for an e ∈ N, then Q is a weak
Ω-group.
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Q = {e1, e2, a, b, c}

∗ e1 e2 a b c

e1 e1 e1 a b c
e2 e2 e2 a b c
a a a e1 c b
b b b c e1 a
c c c b a e2

E e1 e2 a b c

e1 p t v x n
e2 t q k i m
a v k r g f
b x i g s l
c n m f l u

.

µ =

(
e1 e2 a b c
p q r s u

)
.

((Q, ∗),E ) is an Ω-groupoid.
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((Q, ∗),E ) is a weak Ω-group, since all the nonempty quotient
cut-subgroupoids are groups:

µ1/E1 = ∅, µp/Ep = {{e1}}, µq/Eq = {{e2}},
µt/Et = {{e1, e2}}, µu/Eu = {{e2}, {c}}, µs/Es = {{e1}, {b}},
µr/Er = {{e1}, {a}}, µm/Em = {{e2, c}},
µz/Ez = {{e1, e2}, {c}}, µy/Ey = {{e1, e2}, {b}},
µx/Ex = {{e1, b}}, µw/Ew = {{e1, e2}, {a}}, µv/Ev = {{e1, a}},
µn/En = {{e1, e2, c}}, µi/Ei = {{e1, e2, b}},
µk/Ek = {{e1, e2, a}}, µj/Ej = {{e1, e2}, {a}, {b}, {c}},
µg/Eg = {{e1, e2, c}, {a, b}}, µf /Ef = {{e1, e2, b}, {a, c}},
µl/El = {{e1, e2, a}, {b, c}}, µ0/E0 = {{e1, e2, a, b, c}}.

Clearly, e1 and e2 are weak neutral elements and the condition (jj)
holds: N = {e1, e2}, µ(N) = {p, q} and µ−1(↓{p, q}) = Q.
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B. Šešelja Ω-groupoids and Ω-quasigroups



((Q, ∗),E ) is a weak Ω-group, since all the nonempty quotient
cut-subgroupoids are groups:
µ1/E1 = ∅, µp/Ep = {{e1}}, µq/Eq = {{e2}},
µt/Et = {{e1, e2}}, µu/Eu = {{e2}, {c}}, µs/Es = {{e1}, {b}},
µr/Er = {{e1}, {a}}, µm/Em = {{e2, c}},
µz/Ez = {{e1, e2}, {c}}, µy/Ey = {{e1, e2}, {b}},
µx/Ex = {{e1, b}}, µw/Ew = {{e1, e2}, {a}}, µv/Ev = {{e1, a}},
µn/En = {{e1, e2, c}}, µi/Ei = {{e1, e2, b}},
µk/Ek = {{e1, e2, a}}, µj/Ej = {{e1, e2}, {a}, {b}, {c}},
µg/Eg = {{e1, e2, c}, {a, b}}, µf /Ef = {{e1, e2, b}, {a, c}},
µl/El = {{e1, e2, a}, {b, c}}, µ0/E0 = {{e1, e2, a, b, c}}.

Clearly, e1 and e2 are weak neutral elements and the condition (jj)
holds: N = {e1, e2}, µ(N) = {p, q} and µ−1(↓{p, q}) = Q.
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Ω-Subgroups FILOMAT 32 19 (2018) 6699–6711.
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