BEYOND BARYCENTRIC ALGEBRAS AND CONVEX SETS

A. KOMOROWSKI, A. B. ROMANOWSKA Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland J. D. H. SMITH
Department of Mathematics, Iowa State University, Ames, Iowa, 50011, USA

OUTLINE

• Affine spaces, convex sets and barycentric algebras

- Extended barycentric algebras
- *q*-convex sets and
 q-barycentric algebras
- Threshold barycentric algebras and threshold affine spaces

AFFINE SUBSPACES of \mathbb{R}^n

 \mathbb{R} - the field of reals; $I^{\circ} :=]0, 1[=(0,1) \subset \mathbb{R}.$

The line $L_{x,y}$ through $x, y \in \mathbb{R}^n$: $L_{x,y} = \{xy \underline{p} = x(1-p) + yp \in \mathbb{R}^n \mid p \in \mathbb{R}\}.$

 $A \subseteq \mathbb{R}^n$ is a (non-trivial) **affine subspace** of \mathbb{R}^n if, together with any two distinct points x and y, it contains the line $L_{x,y}$.

One obtains an algebra $(A, \{p \mid p \in \mathbb{R}\})$.

CONVEX SUBSETS of \mathbb{R}^n

The line segment $I_{x,y}$ joining the points x, y: $I_{x,y} = \{xy \ \underline{p} = x(1-p) + yp \in \mathbb{R}^n \mid p \in I^\circ\}.$

 $C \subseteq \mathbb{R}^n$ is a (non-trivial) **convex subset** of \mathbb{R}^n if, together with any two distinct points x and y, it contains the line segment $I_{x,y}$.

One obtains an algebra $(C, \{\underline{p} \mid p \in I^{\circ}\}).$

AFFINE SPACES

F - a subfield of ${\mathbb R}$

An affine space over F (or affine F-space) - an algebra (A, \underline{F}) , where

$$\underline{F} = \{\underline{p} \mid p \in F\}$$

and

$$xy\underline{p} = \underline{p}(x, y) = x(1-p) + yp.$$

Note: (A, \underline{F}) is equivalent to the algebra

$$\left(A,\sum_{i=1}^{n}x_{i}r_{i}\Big|\sum_{i=1}^{n}r_{i}=1 \text{ in } F\right).$$

THE VARIETY OF AFFINE F-SPACES

THEOREM: The class \underline{F} of all affine *F*-spaces is a variety (equationally-defined class).

It is axiomatized by the following:

idempotence: xxp = x,

entropicity: $xy\underline{p} \ zt\underline{p} \ \underline{q} = xz\underline{q} \ yt\underline{q} \ \underline{p},$

affine identities: $xy\underline{p} \ xy\underline{q} \ \underline{r} = xy \ \underline{pq\underline{r}}$,

trivial identities: $xy\underline{0} = x = yx\underline{1}$,

for all $p, q, r \in F$.

For each $p \in F$ with $p \neq 0, 1$, the reduct (A, \underline{p}) of an affine *F*-space (A, \underline{F}) is an (idempotent and entropic) quasigroup.

Hence the algebra $(A, \underline{F} \setminus \{\underline{0}, \underline{1}\})$ is an (idempotent and entropic) **multi-quasigroup**.

6

BARYCENTRIC ALGEBRAS

F - a subfield of \mathbb{R} , $I^{\circ} :=]0, 1[=(0,1) \subset F$.

A convex set over F (or convex F-set) an algebra (A, \underline{I}^o) , where $\underline{I}^o = \{\underline{p} \mid p \in I^o\}$.

The class C of convex F-sets forms a quasivariety.

The variety generated by C is the variety \mathcal{B} of **barycentric algebras**.

The variety \mathcal{B} is axiomatized by the following:

idempotence (I): xxp = x,

skew-commutativity (SC): $xy \underline{p} = xy \underline{1 - p} =: xy \underline{p}'$,

skew-associativity (SA): $[xy\underline{p}] z \underline{q} = x [yz \underline{q/(p \circ q)}] \underline{p \circ q}$

for all $p, q \in I^{\circ}$, where $p \circ q = (p'q')' = p + q - pq$.

7

EXAMPLES

• **Convex subsets** of affine *F*-spaces under the operations

 $xy \underline{p} = xp' + yp = x(1-p) + yp$ for each $p \in I^{\circ}$.

The subquasivariety ${\mathcal C}$ of the variety ${\mathcal B}$ is defined by the cancellation laws

$$(xy \underline{p} = xz \underline{p}) \to (y = z)$$

for all operations p of \underline{I}° .

• "Stammered" semilattices (S, \cdot) with the operation $x \cdot y = xy\underline{p}$ for all $p \in I^{\circ}$. They form the subvariety \mathcal{SL} of \mathcal{B} defined by $xy p = xy \underline{r}$ for all $p, r \in I^{\circ}$.

• Certain **sums of convex sets** over semilattices.

THEOREM: Each barycentric algebra is a subalgebra of a Płonka sum of convex sets over its semilattice replica.

EXTENDED BARYCENTRIC ALGEBRAS

Barycentric algebras may be considered as extended barycentric algebras (A, \underline{I}) , where $I = [0, 1] \subset \mathbb{R}$,

and with the operations $\underline{0}$ and $\underline{1}$ defined by

$$xy \underline{0} = x$$
 and $xy \underline{1} = y$.

Skew associativity may also be written as: $[xy\underline{p}]z\underline{q} = x[yz(\underline{p \circ q} \rightarrow \underline{q})]\underline{p \circ q} \qquad (SA),$ where

$$p
ightarrow q = egin{cases} 1 & \mbox{if } p = 0; \ q/p & \mbox{otherwise} \end{cases}$$

Proposition: The class $\overline{\mathcal{B}}$ of extended barycentric algebras is a variety, specified by the identities (I), (SC), (SA) and the two above.

EXTENDING THE CONCEPTS of a CONVEX SET and of a BARYCENTRIC ALGEBRA

Want to extend the concepts of a convex set and a barycentric algebra, while retaining as many key properties of barycentric algebras as possible.

Two types of extensions obtained by:

- 1. using different intervals of the field F;
- 2. using more general rings.

q-CONVEX SETS

A convex subset C of an affine F-space A is an \underline{I}° -subreduct of A (subalgebra of $(A, \underline{I}^{\circ})$).

Replace the interval I° by an open interval]q,q'[, where $q \in F$ with $q \leq 1/2$ and q' = 1 - q.

A subalgebra $(C, \underline{]q, q'[})$ of $(A, \underline{]q, q'[})$ is called a **q-convex set**.

The class C_q of all *q*-convex subsets of affine *F*-spaces is a quasivariety. The variety \mathcal{B}_q generated by the quasivariety C_q is called the variety of **q**-barycentric algebras.

Note: $C_0 = C$, and $B_0 = B$. $B_{1/2} = CBM$ (the variety of commutative binary modes)

SOME BASIC PROPERTIES

Proposition: Let $t \in F$.

If $-\infty < t < 0$, then under the operations of [t, t'] the line F is generated by $\{0, 1\}$. If 0 < t < 1/2, then under the operations of [t, t'] the interval I is generated by $\{0, 1\}$.

Proposition: Free \mathcal{B}_q -algebra over X is isomorphic to the subalgebra generated by X in the]q,q'[-reduct $(XF, \underline{]q}, q'[)$ of the free affine F-space (XF, \underline{F}) over X.

Corollary: In each q-convex set, the operations of [t, t'], for $t \neq 0$ and $t \neq 1/2$, either generate all operations of \underline{I}° , or all operations of \underline{F} .

CLASSIFICATION

THEOREM Let $q \in F$ with $q \leq 1/2$. Then each variety \mathcal{B}_q is equivalent to one of the following:

(a) the variety \mathcal{CBM} of commutative binary modes, if q = 1/2;

(b) the variety ${\cal B}$ of barycentric algebras, if 0 $\leq q < 1/2$;

(c) the variety \mathcal{A} of affine *F*-spaces, if q < 0.

THRESHOLD ALGEBRAS

Set a **threshold** t, where $t = -\infty$ or $t \in F$ with $t \leq 1/2$.

For elements x, y of an affine *F*-space, define

$$xy\underline{\underline{r}} = \begin{cases} x & \text{if } r < t; \\ xy\underline{\underline{r}} = x(1-r) + yr & \text{if } t \le r \le t'; \\ y & \text{if } r > t' \end{cases}$$

for $r \in F$. Then the binary operations \underline{r} are described as **threshold**-*t* **affine combinations** (small, moderate and large respectively).

For a given threshold t, the algebra (A, \underline{F}) , where $\underline{F} = \{\underline{r} \mid r \in F\}$, is called a **threshold**-t affine F-space. **Proposition:** Let t be a threshold. Let A be an affine F-space. Then under the threshold-taffine combinations \underline{r} for $r \in F$, the threshold-taffine F-space (A, \underline{F}) is idempotent, entropic and skew-commutative.

For a given threshold t, the class \mathcal{A}^t of **threshold**-t **affine** F-**spaces** is the variety generated by the class of affine F-spaces under the threshold-t affine combinations.

For $0 \le t \le 1/2$, similar definitions provide the concepts of

threshold-*t* convex combinations,

threshold-t **convex sets**, and the variety \mathcal{B}^t of **threshold-**t **barycentric algebras**.

If
$$t = -\infty$$
, then $\mathcal{A} = \mathcal{A}^{-\infty}$.
If $t = 1/2$, then $\mathcal{A}^{1/2} \simeq \mathcal{B}^{1/2} \simeq \overline{\mathcal{CBM}}$,
If $0 < t < 1/2$, then $\mathcal{A}^t \simeq \mathcal{B}^t \simeq \overline{\mathcal{B}}$, $\mathcal{A}^0 \simeq \overline{\mathcal{B}}$.

MAIN RESULT

THEOREM Each variety of threshold affine *F*-spaces is equivalent to one of the following classes:

(a) the variety \mathcal{A} of affine *F*-spaces;

(b) the variety $\overline{\mathcal{B}}$ of extended barycentric algebras;

(c) the variety \overline{CBM} of extended commutative binary modes.

Some references

 Gudder, S.P.: Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249–264.

• Ježek, J., Kepka, T.: The lattice of varieties of commutative abelian distributive groupoids, Algebra Universalis **5** (1975), 225–237.

 Komorowski, A., Romanowska, A., Smith, J.D.H.: Keimel's problem on the algebraic axiomatization of convexity, Algebra Universalis (2018), 79-22.

Komorowski, A., Romanowska, A., Smith,
J.D.H.: Barycentric algebras and beyond,
Algebra Universalis (2019), 80:20.

Neumann, W.D.: On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel) 21 (1970), 11–16.

• Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras, Fund. Informaticae **81** (2007), 257–273.

Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie, J. Reine Angew. Math. **224** (1966), 44–57.

• Romanowska, A.B., Smith, J.D.H.: Modal Theory, Heldermann, Berlin, 1985.

• Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras, Houston J.Math. **16** (1990), 431–448.

• Romanowska, A.B., Smith, J.D.H.: Modes, World Scientific, Singapore, 2002.

Skornyakov, L.A.: Stochastic algebras,
Izv. Vyssh. Uchebn. Zaved. Mat. 29 (1985),
3–11.