Commutative Automorphic Loops Arising from Groups

Lee Raney (joint work with Mark Greer)

Department of Mathematics University of North Alabama

Loops 2019 Budapest University of Technology and Economics, Hungary 8 July, 2019

Theorem (Thompson, 1964)

Let p be an odd prime and let A be the semidirect product of a p-subgroup P with a normal p'-subgroup Q. Suppose that A acts on a p-group G such that

 $C_G(P) \leq C_G(Q).$

Then Q acts trivially on G.

A proof due to Bender (1967) makes use of the following binary operation.

Definition (Baer, 1957)

Let G be a uniquely 2-divisible group. For $x, y \in G$, define

$$x \circ y = xy[y, x]^{1/2},$$

where [y, x] is the commutator $y^{-1}x^{-1}yx$, and $z^{1/2}$ is the unique element $u \in P$ such that $u^2 = z$.

- $x \circ y = y \circ x$
- $1 \circ x = x$
- (Greer, 2014) If $x \circ a = b$, then $x = a \setminus b = (a^{-1}ba^{-1}b^{-1})^{1/2}b$.

Thus, (G, \circ) is a commutative loop.

- If G is abelian, then $(G, \circ) = G$.
- G has nilpotency class at most 2 (i.e. G' = [G, G] ≤ Z(G)) if and only if (G, ∘) is an abelian group.

In general, what can be said about the loop structure of (G, \circ) ?

Definition

A loop Q is *Moufang* if Q satisfies any of the (equivalent) identities

- z(x(zy)) = ((zx)z)y
- x(z(yz)) = ((xz)y)z
- (zx)(yz) = (z(xy))z
- (zx)(yz) = z((xy)z),

known as the *Moufang identities*, for all $x, y, z \in Q$.

Definition

A group G is 2-Engel (or Levi) if [[x, y], x] = 1 for all $x, y \in G$.

Proposition (Greer)

Let G be a uniquely 2-divisible group. Then (G, \circ) is Moufang if and only if G is 2-Engel.

Definition (Greer, 2014)

A loop Q is a Γ -loop if each of the following is satisfied:

- Q is commutative.
- Q has the automorphic inverse property: for all x, y ∈ Q, (xy)⁻¹ = x⁻¹y⁻¹.
- So For all $x \in Q$, $L_x L_{x^{-1}} = L_{x^{-1}} L_x$ (where $zL_x = xz$).
- For all $x, y \in Q$, $P_x P_y P_x = P_{yP_x}$ (where $zP_x = x^{-1} \setminus (zx)$)

Theorem (Greer, 2014)

Let G be a uniquely 2-divisible group. Then (G, \circ) is a Γ -loop.

Definition

A *(left)* Bruck loop is a loop Q which satisfies each of the following identities:

$$(x(yx))z = x(y(xz))$$

2
$$(xy)^{-1} = x^{-1}y^{-1}$$

Theorem (Glauberman, 1964)

Let G be a uniquely 2-divisible group. Then (G, \oplus) , where

$$x\oplus y=(xy^2x)^{1/2},$$

is a Bruck loop.

Theorem (Greer, 2014)

The categories $BrLp_o$ of Bruck loops of odd order and ΓLp_o of Γ -loops of odd order are isomorphic.

In particular, the functor $\mathcal{G} : \mathbf{BrLp_o} \to \mathbf{\Gamma Lp_o}$ given by $Q \mapsto (L_Q, \circ)$ is an isomorphism, where L_Q is a particular *twisted subgroup* of $\mathrm{Mlt}_{\lambda}(Q) = \langle L_x \mid x \in Q \rangle$, the left multiplication group of Q. This correspondence can be used to study multiplication groups of Bruck loops.

Definition (Aschbacher, 1998)

A *twisted subgroup* of a group G is a subset T of G such that $1 \in T$ and for all $x, y \in T$, $x^{-1} \in T$ and $xyx \in T$.

Definition

Let Q be a loop. The *inner mapping group*, Inn(Q) is the stabilizer of 1 in the multiplication group of Q.

Theorem (Bruck?)

 $\operatorname{Inn}(Q)$ is generated by the following transformations $Q \to Q$:

• $L_{x,y} = L_x L_y L_{yx}^{-1}$

•
$$R_{x,y} = R_x R_y R_{xy}^{-1}$$

•
$$T_x = L_x^{-1} R_x$$
,

where L_x and R_x and the maps $z \mapsto xz$ and $z \mapsto zx$, resp.

Definition

A loop Q is said to be an *automorphic loop* (or *A-loop*) if $Inn(Q) \leq Aut(Q)$.

Theorem (Greer, 2014)

Commutative automorphic loops are Γ -loops.

Conjecture (Greer-Kinyon)

A Γ -loop is automorphic if and only if the (left) multiplication group of the corresponding Bruck loop is metabelian.

Recall that a group G is *metabelian* if there is an abelian normal subgroup A of G such that G/A is also abelian; equivalently, G' is abelian.

We approach this problem with a similar conjecture.

Conjecture

Let G be a finite group of odd order. Then (G, \circ) is automorphic if and only if G is metabelian.

Now, for the duration, let G be the semidirect product of a normal abelian subgroup H of odd order acted on (as automorphisms) by an abelian group F of odd order. Then

$$G = H \rtimes F$$

and

$$(h_1, f_1)(h_2, f_2) = (h_1 f_1(h_2), f_1 f_2).$$

Note that G is metabelian (we call such groups *split metabelian*).

Lemma

Suppose H is an abelian group of odd order, and $\alpha, \beta \in Aut(H)$ are commuting automorphisms of odd order. Then the map $h \mapsto \alpha(h)\beta(h)$ is an automorphism of H.

In particular, for any $f \in F$, the map $\phi_f : H \to H$ given by $\phi_f(h) = hf(h)$ is an automorphism of H which commutes with each automorphism in F.

Lemma

Let
$$u = (h, f), x = (h_1, f_2), y = (h_2, f_2) \in G$$
. Then
• $x \circ y = ((\phi_{f_1}(h_2)\phi_{f_2}(h_1))^{1/2}, f_1f_2)$

•
$$uL_{x,y} = \left(\phi_{f_1f_2}^{-1}\left(\phi_{f_1}\phi_{f_2}(h)\phi_{ff_1}(h_2)f(h_2)^{-1}f_1(h_2)^{-1}\right)^{1/2}, f\right)$$

Note that since (G, \circ) is commutative, $L_{x,y} = R_{x,y}$ and $T_x = id_G$.

Theorem

Let G be a split metabelian group of odd order. Then (G, \circ) is automorphic.

Corollary

If |G| is any one of the following (for distinct odd primes p and q), then (G, \circ) is automorphic.

- pq (where p divides q-1)
- p^2q
- p^2q^2

Note that if |G| = p, pq (where $p \nmid q - 1$), p^2 , or p^3 , then G has class at most 2, and hence (G, \circ) is an abelian group.

Corollary

Let p and q be distinct odd primes with p dividing q - 1. Then there is exactly one nonassociative, commutative, automorphic loop of order pq.

This result follows since there is a unique nonassociative Bruck loop of order *pq* above [Kinyon-Nagy-Vojtěchovský, 2017].

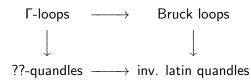
Suppose $|G| = p^4$ (odd prime). Then G is metabelian. There are 15 such groups. All but one of them are split.

- If $|G| = 3^4$, then (G, \circ) is automorphic.
- For p > 3, the non-split metabelian group of order p^4 is $(\mathbb{Z}_{p^2} \rtimes \mathbb{Z}_p) \rtimes \mathbb{Z}_p$.

Groups of order p^5 are metabelian.

Connection to quandles/food for thought:

- Due to [Kikkawa-Robinson, 1973/1979], there is a one-to-one correspondence between involutory latin quandles and Bruck loops of odd order.
- Does there exist a class of quandles corresponding in a similar manner to Γ-loops such that the following diagram commutes?



• What properties of ??-quandles/involutory latin quandles corresponds to commutative automorphic loop/metabelian left multiplication group?

Thank you!

University of North Alabama

Lee Raney