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One example ...

F (x) = x2

defined on Fq with q odd:

F (x + a)− F (x) = 2xa + a2

is a permutation for all a 6= 0.

Problem
Find functions F such that F (x + a)− F (x) are permutations for
all a 6= 0.

Not possible if q even: F (x + a) + F (x) = F (y + a) + F (y) with
y = x + a.
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... one more example ...

F (x) = x3

defined on Fq with q even:

F (x + a) + F (x) = x2a + a2x + a3

is 2 to 1-mapping for all a 6= 0.

Problem
Find functions F on F2n such that F (x + a) + F (x) are
2 to 1-mappings for all a 6= 0.

Note: Only additive properties are needed in the definition, but
many constructions use multiplicative properties in F2n which
realizes Fn

2.
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And now the important definition

A function F : Fn
2 → Fn

2 is almost perfect nonlinear (APN) if

x 7→ F (x + a) + F (x)

is 2 to 1 for all a 6= 0.
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Motivation: Codes

 1
x

F (x)


x∈F n

2

∈ F(2n+1,2n)
2

row space generates a code. The dual code has minimum weight 6:

F (a) + F (x + a) + F (y + a) + F (x + y + a) 6= 0

for all distinct a, x , y . This is optimal.
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Motivation: Cryptography

An APN function F : Fn
2 → Fn

2 is highly nonlinear.

Such functions are used as S-boxes (substitution boxes) in many
popular symmetric schemes:

I Data Encryption Standard

I Advanced encryption standard

See also the talk by Simona Samardjiska on friday.
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Some infinite families

Example

x2
k+1 is APN on F2n if gcd(n, k) = 1.

Example (Budaghyan, Carlet, Leander 2009)

x3 + tr(x9) is APN on F2n .

Example

x−1 is APN on F2n if n is odd.
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quadratic vs. non-quadratic

F is called quadratic if

F (x + a) + F (x)

is affine. In Finite Fields version:

F (x) =
∑
i<j

αi ,jx
2i+2j +

∑
j

βjx
2j + γ.

Linear and constant terms are not important for F (x + a) + F (x).

Until 2006, only few families of non-quadratic APN monomials
were known, and only the classical quadratic monomials x2

k+1.
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2006

This changed dramatically in 2006 (Edel, P., Kyureghyan;
Bierbrauer; Dillon McQuistan, Wolfe), where several
new quadratic APN’s were constructed:

Example

I x 7→ x3 + x10 + αx24 on F26

I more on F26

I x 7→ x3 + βx2
5+22 on F210

I x 7→ x3 + γx2
9+24 on F212

α, β, γ must be choosen properly.
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My favorite problems

Many more quadratic families and sporadic examples have been
found since 2006, but only one example of a non-quadratic with
n = 6 (Edel, P. 2009).

Problem
Show that

I Number of APN functions grows quickly.

I Non-quadratic examples?

I APN permutation if n is even.
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The BIG APN problem

Problem
Are there APN permutations if n is even?

I Would be useful for cryptographic applications.

I Easy to construct if n is odd.

I No quadratic APN permutations can exist if n is even.

I There is only one example if n is even known. This is
equivalent to x 7→ x3 + x10 + αx24 on F26 (Browning,
Dillon, McQuistan, Wolfe 2010), hence equivalent to
quadratic.
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Designs

Steiner triple systems:

I v points

I blocks of size 3

I Any two different points are contained in exactly one block.

Example (Classical)

Points and linear 2-dimensional subspaces (without 0) in Fn
2 \ {0}.

Steiner quadruple systems:

I v points

I blocks of size 4

I Any three different points are contained in exactly one block.

Example (Classical)

Points and affine 2-dimensional subspaces in Fn
2.
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Rodier Condition

I F : Fn
2 → Fn

2 is an APN function if and only if

F (x) + F (y) + F (z) + F (u) 6= 0

for all subsets {x , y , z , u} of order 4 with x + y + z + u = 0.

I Note that the subsets {x , y , z , u} of order 4 with
x + y + z + u = 0 form a Steiner quadruple system: Given
any three different points x , y , z in Fn

2, there is a unique 4-th
point u such that x + y + z + u = 0.
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APN permutations and Steiner quadrupel systems

Important Observation:

There is an APN permutation F iff there is a collection D of sets
of size 4 on Fn

2 forming a classical Steiner quadruple system such
that none of the sets is an affine subspace of dimension 2.

D =
{
{F (x),F (y),F (z),F (u)} : x + y + z + u = 0

}
.

I Are there APN permutations for other Steiner quadruple
systems?

I Is there perhaps a design/loop theoretic approach to attack
this problem for the classical Steiner quadruple system?
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Partially APN functions

Budaghyan, Kaleyski, Kwon, Riera, Stănică (2019)
studied functions F : Fn

2 → Fn
2 such that

F (x) + F (y) + F (x + y) 6= 0

for all x , y ∈ Fn
2, x 6= y . That is the Rodier condition for u = 0.

They called these partially APN.

I There are many more partially APN than APN.

I For quadratic functions: Partially APN if and only if APN.

I They found many partially APN permutations, but no infinite
family.
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Main Theorem

Theorem
For any n ≥ 3 there are partially APN permutations on Fn

2.

Proof:

I The blocks {x , y , x + y : x 6= y} form a Steiner triple system
on Fn

2 \ {0} (any two different points are contained in exactly
one triple).

I Teirlinck (1977) proved that any two Steiner triple systems
S and T defined on a point set V have a disjoint realization
(i.e. there is an isomorphic copy T ′ of T on V such that no
triple occurs both in S and T ′).

I If we begin with T = S above, this gives the desired
permutation.
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Comments

I Teirlinck’s result has a short (1 page) and elementary but
non-trivial proof.

I Teirlinck’s result is needed only for one triple system, the
classical one defined on Fn

2 \ {0}.
I We tried to extend this to quadruple systems, but could not

succeed.

I Teirlinck’s result is not constructive.

17 / 19



Summary

I Almost perfect nonlinear functions.

I BIG problem: APN permutations with n ≥ 6.

I Translation into a much more general problem for Steiner
quadruple systems (disjoint?).

I Non-constructive proof for the existence of permutation
partially APN for all n.

I Teirlinck for the classical APN permutation is equivalent to
the BIG APN problem.
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Bent functions and Steiner triple systems

A bent function f : Fn
2 → F2 maximizes the number of quadruples

in the classical Steiner quadruple system with
f (x) + f (y) + f (z) + f (u) = 1.

I Other quadruple systems?

I For Steiner triple systems, this question is trivial (f = 1),
but perhaps non-trivial for balanced functions.

I Difference between classical and non-classical Steiner
systems?
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