2-permutational left quasigroups

Agata Pilitowska¹ with Přemysl Jedlička² and Anna Zamojska-Dzienio¹

¹ Faculty of Mathematics and Information Science, Warsaw University of Technology ² Faculty of Engineering, Czech University of Life Sciences

LOOPS 2019, July 7-13, 2019

Definition

A left quasigroup (X, \circ, \setminus) is:

- 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$
- 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$

Example

2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$

- 2-permutational + idempotent \Rightarrow 2-reductive.
- 2-permutational + left distributive (a rack) \Rightarrow 2-reductive

Definition

A left quasigroup (X, \circ, \setminus) is:

- 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$
- 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$

Example

2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$

- 2-permutational + idempotent \Rightarrow 2-reductive.
- 2-permutational + left distributive (a rack) \Rightarrow 2-reductive

Definition

A left quasigroup (X, \circ, \setminus) is:

- 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$
- 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$

Example

2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$

- 2-permutational + idempotent \Rightarrow 2-reductive.
- 2-permutational + left distributive (a rack) \Rightarrow 2-reductive

Definition

A left quasigroup (X, \circ, \setminus) is

- *right cyclic*, if $(x \ y) \ (x \ z) = (y \ x) \ (y \ z)$, for all $x, y, z \in X$
- *non-degenerate*, if the mapping $T: X \to X$; $x \mapsto x \setminus x$ is a bijection

Example

Right cyclic left quasigroup:

	0	1	2	3
()	1	()	3	2
1	3	2	1	()
2	1	()	3	2
3	3	2	1	()

Definition

A left quasigroup (X, \circ, \setminus) is

- *right cyclic*, if $(x \ y) \ (x \ z) = (y \ x) \ (y \ z)$, for all $x, y, z \in X$
- *non-degenerate*, if the mapping $T: X \to X$; $x \mapsto x \setminus x$ is a bijection

Example

Right cyclic left quasigroup:

0	0	1	2	
0	1	0	3	2
1	3	2	1	0
2	1	0	3	2
3	3	0 2 0 2	1	0

Theorem (W. Rump)

Each finite right cyclic left quasigroup is non-degenerate.

Example (W. Rump)

The quasigroup $(\mathbb{Z}, \circ, \setminus)$ with

$$x \circ y = y + min(x, 0)$$
 and $x \setminus y = y - min(x, 0)$,

is right cyclic.

The mapping $f \colon \mathbb{Z} \to \mathbb{Z}$

$$x \mapsto x \backslash x = \begin{cases} x, \text{ for } x \ge 0\\ 0, \text{ for } x < 0 \end{cases}$$

is not a bijection.

Theorem (W. Rump)

Each finite right cyclic left quasigroup is non-degenerate.

Example (W. Rump)

The quasigroup $(\mathbb{Z}, \circ, \setminus)$ with

$$x \circ y = y + min(x, 0)$$
 and $x \setminus y = y - min(x, 0)$,

is right cyclic.

The mapping $f: \mathbb{Z} \to \mathbb{Z}$

$$x \mapsto x \backslash x = \begin{cases} x, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$$

is not a bijection.

Example (2-permutational versus right cyclic)

2-permutational left quasigroup (X, \circ, \setminus)

but not right cyclic $0 = 0 \setminus 1 = (0 \setminus 1) \setminus 1 \neq (1 \setminus 1) \setminus 1 = 2 \setminus 1 = 2$ Right cyclic left quasigroup (X, \circ, \setminus)

but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$.

Example (2-permutational versus right cyclic)

2-permutational left quasigroup (X, \circ, \setminus)

but not right cyclic $0 = 0 \setminus 1 = (0 \setminus 1) \setminus 1 \neq (1 \setminus 1) \setminus 1 = 2 \setminus 1 = 2$.

but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$.

Example (2-permutational versus right cyclic)

2-permutational left quasigroup (X, \circ, \setminus)

but not right cyclic $0=0\backslash 1=(0\backslash 1)\backslash 1\neq (1\backslash 1)\backslash 1=2\backslash 1=2$. Right cyclic left quasigroup (X,\circ,\backslash)

but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$.

Lemma

If
$$(X, \circ, \setminus)$$
 is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then

$$right\ cyclic \iff 2-permutational$$

Theorem (JPZ)

If (X, \circ, \setminus) *is non-degenerate right cyclic then*

$$medial \iff 2-permutational$$

Corollary

Each finite 2-permutational right cyclic left quasigroup is medial.

Question

Lemma

If
$$(X, \circ, \setminus)$$
 is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t)$), then

$$right\ cyclic \iff 2-permutational$$

Theorem (JPZ)

If (X, \circ, \setminus) is non-degenerate right cyclic then

$$medial \iff 2-permutational$$

Corollary

Each finite 2-permutational right cyclic left quasigroup is medial.

Question

Lemma

If
$$(X, \circ, \setminus)$$
 is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then right cyclic \iff 2 – permutational

Theorem (JPZ)

If (X, \circ, \setminus) *is non-degenerate right cyclic then*

$$medial \iff 2-permutational$$

Corollary

Each finite 2-permutational right cyclic left quasigroup is medial.

Question

Lemma

If
$$(X, \circ, \setminus)$$
 is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then right cyclic \iff 2 – permutational

Theorem (JPZ)

If (X, \circ, \setminus) *is non-degenerate right cyclic then*

$$medial \iff 2-permutational$$

Corollary

Each finite 2-permutational right cyclic left quasigroup is medial.

Question

Lemma

If
$$(X, \circ, \setminus)$$
 is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t)$), then

$$right\ cyclic \iff 2-permutational$$

Theorem (JPZ)

If (X, \circ, \setminus) *is non-degenerate right cyclic then*

$$medial \iff 2-permutational$$

Corollary

Each finite 2-permutational right cyclic left quasigroup is medial.

Question

YBE: $(id \times r)(r \times id)(id \times r) = (r \times id)(id \times r)(r \times id)$

Fact

Each (involutive) birack $(X, \circ, \bullet, \setminus, /)$ defines an (involutive) solution of YBE:

$$r(x,y) = (x \circ y, x \bullet y)$$

Each (involutive) solution $r = (\sigma, \tau)$ determines an (involutive) birack with

$$x \circ y = \sigma_x(y), \ x \bullet y = \tau_y(x), \ x \setminus y = \sigma_x^{-1}(y), \ x/y = \tau_y^{-1}(x)$$

Involutive birack: $x \bullet y = (x \circ y) \setminus x$

Theorem (W. Rump; P. Dehornoy)

An algebra $(X, \circ, \bullet, \setminus, /)$ is an involutive birack if and only if (X, \circ, \setminus) is a non-degenerate right cyclic left quasigroup.

YBE: $(id \times r)(r \times id)(id \times r) = (r \times id)(id \times r)(r \times id)$

Fact

Each (involutive) birack $(X, \circ, \bullet, \setminus, /)$ defines an (involutive) solution of YBE:

$$r(x,y) = (x \circ y, x \bullet y)$$

Each (involutive) solution $r = (\sigma, \tau)$ determines an (involutive) birack with

$$x \circ y = \sigma_x(y), \ x \bullet y = \tau_y(x), \ x \setminus y = \sigma_x^{-1}(y), \ x/y = \tau_y^{-1}(x)$$

Involutive birack: $x \bullet y = (x \circ y) \setminus x$

Theorem (W. Rump; P. Dehornoy)

An algebra $(X, \circ, \bullet, \setminus, /)$ is an involutive birack if and only if (X, \circ, \setminus) is a non-degenerate right cyclic left quasigroup.

Multipermutation involutive solutions of level 2

For an involutive birack $(X, \circ, \bullet, \setminus, /)$ the retraction relation:

$$x \sim y \iff x \circ z = y \circ z$$
, for all $z \in X$

is a congruence.

The quotient birack is denoted by Ret(X).

Proposition (T. Gateva-Ivanova)

Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack. Then |Ret(Ret(X))| = 1 if and only if the left quasigroup (X, \circ, \setminus) is 2-permutational (2-permutational birack).

Fact

Multipermutation involutive solutions of level 2

2-permutational right cyclic non-degenerate left quasigroups

Multipermutation involutive solutions of level 2

For an involutive birack $(X, \circ, \bullet, \setminus, /)$ the retraction relation:

$$x \sim y \iff x \circ z = y \circ z$$
, for all $z \in X$

is a congruence.

The quotient birack is denoted by Ret(X).

Proposition (T. Gateva-Ivanova)

Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack. Then |Ret(Ret(X))| = 1 if and only if the left quasigroup (X, \circ, \setminus) is 2-permutational (2-permutational birack).

Fact

Multipermutation involutive solutions of level 2

2-permutational right cyclic non-degenerate left quasigroups

2-reductive left quasigroups

Lemma

If (X, \circ, \setminus) is left distributive, then the following are equivalent:

- \bigcirc (X, \circ, \setminus) is right cyclic;
- \bigcirc (X, \circ, \setminus) is 2-reductive.

Lemma

If (X, \circ, \setminus) *is* 2-reductive, then the following are equivalent:

- \bigcirc (X, \circ, \setminus) is right cyclic;
- (X, \circ, \setminus) is left distributive.

Lemma

If (X, \circ, \setminus) *is right cyclic, then the following are equivalent:*

- (X, \circ, \setminus) is left distributive;
- (X, \circ, \setminus) is 2-reductive.

The Structure Theorem for 2-reductive racks

Theorem (JPZ + D. Stanovský)

An algebra (X, \circ, \setminus) is a 2-reductive rack if and only if it is a disjoint union of abelian groups A_j , $j \in I$, with operations for $x \in A_i$ and $y \in A_j$:

$$x \circ y = y + c_{i,j}$$
 and $x \setminus y = x - c_{i,j}$,

where $A_j = \langle \{c_{i,j} \mid i \in I\} \rangle$, for every $j \in I$.

ALGORITHM: Outputs all 2-reductive racks of size n

- For all partitionings $n = n_1 + n_2 + \cdots + n_k$ do (2–4).
- O For all abelian groups A_1, \ldots, A_k of size $|A_i| = n_i$ do (3–4).
- For all constants $a_{i,j} \in A_j$ do (4).
- If, for all $1 \le j \le k$, we have $A_j = \langle \{a_{i,j} \mid i \in I\} \rangle$ then construct a rack as a sum of disjoint union of groups A_i .

The Structure Theorem for 2-reductive racks

Theorem (JPZ + D. Stanovský)

An algebra (X, \circ, \setminus) is a 2-reductive rack if and only if it is a disjoint union of abelian groups A_j , $j \in I$, with operations for $x \in A_i$ and $y \in A_j$:

$$x \circ y = y + c_{i,j}$$
 and $x \setminus y = x - c_{i,j}$,

where $A_j = \langle \{c_{i,j} \mid i \in I\} \rangle$, for every $j \in I$.

ALGORITHM: Outputs all 2-reductive racks of size *n*

- For all partitionings $n = n_1 + n_2 + \cdots + n_k$ do (2–4).
- O For all abelian groups A_1, \ldots, A_k of size $|A_i| = n_i$ do (3–4).
- \bigcirc For all constants $a_{i,j} \in A_j$ do (4).
- If, for all $1 \le j \le k$, we have $A_j = \langle \{a_{i,j} \mid i \in I\} \rangle$ then construct a rack as a sum of disjoint union of groups A_i .

Enumeration

Theorem

Two 2-reductive racks $A = ((A_i)_{i \in I}; (c_{i,j})_{i,j \in I})$ and $B = ((B_i)_{i \in I}; (b_{i,j})_{i,j \in I})$, over the same index set I, are isomorphic if and only if there is a permutation $\pi \in S_n$ and group isomorphisms $\psi_i \colon A_i \to B_{\pi(i)}$ such that $\psi_j(c_{i,j}) = b_{\pi(i),\pi(j)}$.

The number of racks (P. Vojtéchovský and S.Y. Yang [2019]) and 2-reductive racks of size n, up to isomorphism

	1	2	3	4	5	6		8	9	10
racks	1	2	6	19	74	353	2080	16023	159526	2093244
2-reductive	1	2	5	17	65	323	1960	15421	155889	2064688

	11	12	13	14
racks	36265070	836395102	25794670618	
2-reductive racks	35982357	832698007	25731050861	1067863092309

Enumeration

Theorem

Two 2-reductive racks $A = ((A_i)_{i \in I}; (c_{i,j})_{i,j \in I})$ and $B = ((B_i)_{i \in I}; (b_{i,j})_{i,j \in I})$, over the same index set I, are isomorphic if and only if there is a permutation $\pi \in S_n$ and group isomorphisms $\psi_i \colon A_i \to B_{\pi(i)}$ such that $\psi_j(c_{i,j}) = b_{\pi(i),\pi(j)}$.

The number of racks (P. Vojtéchovský and S.Y. Yang [2019]) and 2-reductive racks of size n, up to isomorphism

		2			5	6	7	8	9	10
racks	1	2	6	19	74	353	2080	16023	159526	2093244
2-reductive	1	2	5	17	65	323	1960	15421	155889	2064688

n	11	12	13	14
racks	36265070	836395102	25794670618	?
2-reductive racks	35982357	832698007	25731050861	1067863092309

Example (2-reductive racks of size 3 and 4)

- One orbit: $((\mathbb{Z}_3), (1))$.
- Two orbits: $((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$ and $((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix})$.
- Three orbits: $((\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$.
- One orbit: $((\mathbb{Z}_4), (1))$.
- Two orbits: $((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}).$
- Three orbits: $((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}).$

Main Theorem

Theorem

Each 2-permutational right cyclic non-degenerate left quasigroup is isotopic to 2-reductive rack under isotopy (id, β ,id), for some bijection β of the set X.

• For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that

(1)
$$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$
 for all $x, y, z \in X$

the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic.

• For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with

$$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$
 and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$,

is a 2-reductive rack

- e * y = y, for any $y \in X$
- the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1).

• For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that

(1)
$$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$
 for all $x, y, z \in X$,

the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic.

• For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with

$$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$
 and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$,

is a 2-reductive rack

- e * y = y, for any $y \in X$
- the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1).

• For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that

(1)
$$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$
 for all $x, y, z \in X$,

the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic.

• For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with

$$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$
 and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$,

is a 2-reductive rack.

- e * y = y, for any $y \in X$
- ▶ the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1).

• For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that

(1)
$$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$
 for all $x, y, z \in X$,

the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic.

• For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with

$$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$
 and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$,

is a 2-reductive rack.

- e * y = y, for any $y \in X$;
- ▶ the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1).

How to obtain all 2-permutational right cyclic left quasigroups from 2-reductive racks

- Take all 2-reductive racks (X, \circ, \setminus) such that there exists $e \in X$ with $L_e = \mathrm{id}$
- ② Take all permutations $\pi \in S_X$ which
 - satisfy Condition (1)

$$\pi(y) \circ \pi(x \circ z) = \pi(x) \circ \pi(y \circ z)$$
 for all $x, y, z \in X$,

- ▶ are such that $(x \circ \pi(y)) \circ z \neq y \circ z$ for some $x, y, z \in X$
- Onstruct the left quasigroup $(X, *, \setminus_*)$, with

$$x * y = x \circ \pi(y)$$
 and $x \setminus y = \pi^{-1}(x \setminus y)$

Example (1)

The 2-permutational right cyclic left quasigroup

can be obtain from two non-isomorphic 2-reductive racks:

*1	0	1	2	3	4
0	0	1	2	3	4
1	3	1	2	4	0
2	4	1	2	0	3
3	0	1	2	3	4
4	0 3 4 0 0	1	2	3	4

*2	0	1	2	3	4
0	4	1	2	0	3
1	0	1	2	3	4
2	3	1	2	4	0
3	4	1	2	0	3
4	0 4 0 3 4 4	1	2	0	3

and

Example (2)

The 2-reductive rack

*	0	1	_	3
0	0 2 0 2	1	2	3
1	2	3	0	1
1 2 3	0	1	2	3
3	2	3	0	1

can be isotopic to two non-isomorphic 2-permutational right cyclic left quasigroups:

01	0	1	2	3	02	0	1	2	3
0					0	1	2	3	0
		2			1	3	0	1	2
		0					2		
3	3	2	1	0	3	3	0	1	2

The number of right cyclic 2-permutational left quasigroups of size n

n	1	2	3	4	5	6	7	8
right cyclic l.q.	1	2	5	23	88	595	3456	34528
2-permutational right cyclic l.q.	1	2	5	19	70	359	2095	16332
2-reductive racks	1	2	5	17	65	323	1960	15421
2-permutational, not 2-reductive	0	0	0	2	5	36	135	911

There are 23 right cyclic 2-permutational left quasigroups of size 4, up to isomorphism

- 17 are 2-reductive
- Two are 2-permutational

• Two are 3-permutational $((a \circ x) \circ y) \circ z = ((b \circ x) \circ y) \circ z$

• Two are not k-permutational for any $k \in \mathbb{N}$