2-permutational left quasigroups Agata Pilitowska¹ with Přemysl Jedlička² and Anna Zamojska-Dzienio¹ ¹ Faculty of Mathematics and Information Science, Warsaw University of Technology ² Faculty of Engineering, Czech University of Life Sciences LOOPS 2019, July 7-13, 2019 #### Definition A left quasigroup (X, \circ, \setminus) is: - 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$ - 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$ ## Example 2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$ - 2-permutational + idempotent \Rightarrow 2-reductive. - 2-permutational + left distributive (a rack) \Rightarrow 2-reductive #### Definition A left quasigroup (X, \circ, \setminus) is: - 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$ - 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$ ## Example 2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$ - 2-permutational + idempotent \Rightarrow 2-reductive. - 2-permutational + left distributive (a rack) \Rightarrow 2-reductive #### Definition A left quasigroup (X, \circ, \setminus) is: - 2-permutational if $(a \circ x) \circ y = (b \circ x) \circ y$, for all $a, b, x, y \in X$ - 2-reductive if $(a \circ x) \circ y = x \circ y$, for all $a, x, y \in X$ ## Example 2-permutational not 2-reductive: $(0 \circ 1) \circ 1 = 0 \circ 1 = 0 \neq 2 = 1 \circ 1$ - 2-permutational + idempotent \Rightarrow 2-reductive. - 2-permutational + left distributive (a rack) \Rightarrow 2-reductive #### Definition A left quasigroup (X, \circ, \setminus) is - *right cyclic*, if $(x \ y) \ (x \ z) = (y \ x) \ (y \ z)$, for all $x, y, z \in X$ - *non-degenerate*, if the mapping $T: X \to X$; $x \mapsto x \setminus x$ is a bijection ## Example Right cyclic left quasigroup: | | 0 | 1 | 2 | 3 | |----|---|----|---|----| | () | 1 | () | 3 | 2 | | 1 | 3 | 2 | 1 | () | | 2 | 1 | () | 3 | 2 | | 3 | 3 | 2 | 1 | () | #### Definition A left quasigroup (X, \circ, \setminus) is - *right cyclic*, if $(x \ y) \ (x \ z) = (y \ x) \ (y \ z)$, for all $x, y, z \in X$ - *non-degenerate*, if the mapping $T: X \to X$; $x \mapsto x \setminus x$ is a bijection ## Example Right cyclic left quasigroup: | 0 | 0 | 1 | 2 | | |---|---|------------------|---|---| | 0 | 1 | 0 | 3 | 2 | | 1 | 3 | 2 | 1 | 0 | | 2 | 1 | 0 | 3 | 2 | | 3 | 3 | 0
2
0
2 | 1 | 0 | ## Theorem (W. Rump) Each finite right cyclic left quasigroup is non-degenerate. ## Example (W. Rump) The quasigroup $(\mathbb{Z}, \circ, \setminus)$ with $$x \circ y = y + min(x, 0)$$ and $x \setminus y = y - min(x, 0)$, is right cyclic. The mapping $f \colon \mathbb{Z} \to \mathbb{Z}$ $$x \mapsto x \backslash x = \begin{cases} x, \text{ for } x \ge 0\\ 0, \text{ for } x < 0 \end{cases}$$ is not a bijection. ## Theorem (W. Rump) Each finite right cyclic left quasigroup is non-degenerate. ## Example (W. Rump) The quasigroup $(\mathbb{Z}, \circ, \setminus)$ with $$x \circ y = y + min(x, 0)$$ and $x \setminus y = y - min(x, 0)$, is right cyclic. The mapping $f: \mathbb{Z} \to \mathbb{Z}$ $$x \mapsto x \backslash x = \begin{cases} x, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$$ is not a bijection. ## Example (2-permutational versus right cyclic) 2-permutational left quasigroup (X, \circ, \setminus) but not right cyclic $0 = 0 \setminus 1 = (0 \setminus 1) \setminus 1 \neq (1 \setminus 1) \setminus 1 = 2 \setminus 1 = 2$ Right cyclic left quasigroup (X, \circ, \setminus) but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$. #### Example (2-permutational versus right cyclic) 2-permutational left quasigroup (X, \circ, \setminus) but not right cyclic $0 = 0 \setminus 1 = (0 \setminus 1) \setminus 1 \neq (1 \setminus 1) \setminus 1 = 2 \setminus 1 = 2$. but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$. #### Example (2-permutational versus right cyclic) 2-permutational left quasigroup (X, \circ, \setminus) but not right cyclic $0=0\backslash 1=(0\backslash 1)\backslash 1\neq (1\backslash 1)\backslash 1=2\backslash 1=2$. Right cyclic left quasigroup (X,\circ,\backslash) but not 2-permutational $2 = (0 \circ 1) \circ (0 \circ 0) \neq (1 \circ 0) \circ (1 \circ 0) = 0$. #### Lemma If $$(X, \circ, \setminus)$$ is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then $$right\ cyclic \iff 2-permutational$$ #### Theorem (JPZ) *If* (X, \circ, \setminus) *is non-degenerate right cyclic then* $$medial \iff 2-permutational$$ ## Corollary Each finite 2-permutational right cyclic left quasigroup is medial. #### Question #### Lemma If $$(X, \circ, \setminus)$$ is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t)$), then $$right\ cyclic \iff 2-permutational$$ #### Theorem (JPZ) If (X, \circ, \setminus) is non-degenerate right cyclic then $$medial \iff 2-permutational$$ ## Corollary Each finite 2-permutational right cyclic left quasigroup is medial. #### Question #### Lemma If $$(X, \circ, \setminus)$$ is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then right cyclic \iff 2 – permutational #### Theorem (JPZ) *If* (X, \circ, \setminus) *is non-degenerate right cyclic then* $$medial \iff 2-permutational$$ ## Corollary Each finite 2-permutational right cyclic left quasigroup is medial. #### Question #### Lemma If $$(X, \circ, \setminus)$$ is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t))$, then right cyclic \iff 2 – permutational #### Theorem (JPZ) *If* (X, \circ, \setminus) *is non-degenerate right cyclic then* $$medial \iff 2-permutational$$ ## Corollary Each finite 2-permutational right cyclic left quasigroup is medial. #### Question #### Lemma If $$(X, \circ, \setminus)$$ is medial $((x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t)$), then $$right\ cyclic \iff 2-permutational$$ #### Theorem (JPZ) *If* (X, \circ, \setminus) *is non-degenerate right cyclic then* $$medial \iff 2-permutational$$ #### Corollary Each finite 2-permutational right cyclic left quasigroup is medial. #### Question # YBE: $(id \times r)(r \times id)(id \times r) = (r \times id)(id \times r)(r \times id)$ #### Fact Each (involutive) birack $(X, \circ, \bullet, \setminus, /)$ defines an (involutive) solution of YBE: $$r(x,y) = (x \circ y, x \bullet y)$$ Each (involutive) solution $r = (\sigma, \tau)$ determines an (involutive) birack with $$x \circ y = \sigma_x(y), \ x \bullet y = \tau_y(x), \ x \setminus y = \sigma_x^{-1}(y), \ x/y = \tau_y^{-1}(x)$$ Involutive birack: $x \bullet y = (x \circ y) \setminus x$ ## Theorem (W. Rump; P. Dehornoy) An algebra $(X, \circ, \bullet, \setminus, /)$ is an involutive birack if and only if (X, \circ, \setminus) is a non-degenerate right cyclic left quasigroup. # YBE: $(id \times r)(r \times id)(id \times r) = (r \times id)(id \times r)(r \times id)$ #### Fact Each (involutive) birack $(X, \circ, \bullet, \setminus, /)$ defines an (involutive) solution of YBE: $$r(x,y) = (x \circ y, x \bullet y)$$ Each (involutive) solution $r = (\sigma, \tau)$ determines an (involutive) birack with $$x \circ y = \sigma_x(y), \ x \bullet y = \tau_y(x), \ x \setminus y = \sigma_x^{-1}(y), \ x/y = \tau_y^{-1}(x)$$ Involutive birack: $x \bullet y = (x \circ y) \setminus x$ ## Theorem (W. Rump; P. Dehornoy) An algebra $(X, \circ, \bullet, \setminus, /)$ is an involutive birack if and only if (X, \circ, \setminus) is a non-degenerate right cyclic left quasigroup. # Multipermutation involutive solutions of level 2 For an involutive birack $(X, \circ, \bullet, \setminus, /)$ the retraction relation: $$x \sim y \iff x \circ z = y \circ z$$, for all $z \in X$ is a congruence. The quotient birack is denoted by Ret(X). ## Proposition (T. Gateva-Ivanova) Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack. Then |Ret(Ret(X))| = 1 if and only if the left quasigroup (X, \circ, \setminus) is 2-permutational (2-permutational birack). #### Fact Multipermutation involutive solutions of level 2 2-permutational right cyclic non-degenerate left quasigroups # Multipermutation involutive solutions of level 2 For an involutive birack $(X, \circ, \bullet, \setminus, /)$ the retraction relation: $$x \sim y \iff x \circ z = y \circ z$$, for all $z \in X$ is a congruence. The quotient birack is denoted by Ret(X). #### Proposition (T. Gateva-Ivanova) Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack. Then |Ret(Ret(X))| = 1 if and only if the left quasigroup (X, \circ, \setminus) is 2-permutational (2-permutational birack). #### Fact Multipermutation involutive solutions of level 2 2-permutational right cyclic non-degenerate left quasigroups # 2-reductive left quasigroups #### Lemma If (X, \circ, \setminus) is left distributive, then the following are equivalent: - \bigcirc (X, \circ, \setminus) is right cyclic; - \bigcirc (X, \circ, \setminus) is 2-reductive. #### Lemma *If* (X, \circ, \setminus) *is* 2-reductive, then the following are equivalent: - \bigcirc (X, \circ, \setminus) is right cyclic; - (X, \circ, \setminus) is left distributive. #### Lemma *If* (X, \circ, \setminus) *is right cyclic, then the following are equivalent:* - (X, \circ, \setminus) is left distributive; - (X, \circ, \setminus) is 2-reductive. #### The Structure Theorem for 2-reductive racks ## Theorem (JPZ + D. Stanovský) An algebra (X, \circ, \setminus) is a 2-reductive rack if and only if it is a disjoint union of abelian groups A_j , $j \in I$, with operations for $x \in A_i$ and $y \in A_j$: $$x \circ y = y + c_{i,j}$$ and $x \setminus y = x - c_{i,j}$, where $A_j = \langle \{c_{i,j} \mid i \in I\} \rangle$, for every $j \in I$. ALGORITHM: Outputs all 2-reductive racks of size n - For all partitionings $n = n_1 + n_2 + \cdots + n_k$ do (2–4). - O For all abelian groups A_1, \ldots, A_k of size $|A_i| = n_i$ do (3–4). - For all constants $a_{i,j} \in A_j$ do (4). - If, for all $1 \le j \le k$, we have $A_j = \langle \{a_{i,j} \mid i \in I\} \rangle$ then construct a rack as a sum of disjoint union of groups A_i . #### The Structure Theorem for 2-reductive racks ## Theorem (JPZ + D. Stanovský) An algebra (X, \circ, \setminus) is a 2-reductive rack if and only if it is a disjoint union of abelian groups A_j , $j \in I$, with operations for $x \in A_i$ and $y \in A_j$: $$x \circ y = y + c_{i,j}$$ and $x \setminus y = x - c_{i,j}$, where $A_j = \langle \{c_{i,j} \mid i \in I\} \rangle$, for every $j \in I$. #### ALGORITHM: Outputs all 2-reductive racks of size *n* - For all partitionings $n = n_1 + n_2 + \cdots + n_k$ do (2–4). - O For all abelian groups A_1, \ldots, A_k of size $|A_i| = n_i$ do (3–4). - \bigcirc For all constants $a_{i,j} \in A_j$ do (4). - If, for all $1 \le j \le k$, we have $A_j = \langle \{a_{i,j} \mid i \in I\} \rangle$ then construct a rack as a sum of disjoint union of groups A_i . #### Enumeration #### Theorem Two 2-reductive racks $A = ((A_i)_{i \in I}; (c_{i,j})_{i,j \in I})$ and $B = ((B_i)_{i \in I}; (b_{i,j})_{i,j \in I})$, over the same index set I, are isomorphic if and only if there is a permutation $\pi \in S_n$ and group isomorphisms $\psi_i \colon A_i \to B_{\pi(i)}$ such that $\psi_j(c_{i,j}) = b_{\pi(i),\pi(j)}$. The number of racks (P. Vojtéchovský and S.Y. Yang [2019]) and 2-reductive racks of size n, up to isomorphism | | 1 | 2 | 3 | 4 | 5 | 6 | | 8 | 9 | 10 | |-------------|---|---|---|----|----|-----|------|-------|--------|---------| | racks | 1 | 2 | 6 | 19 | 74 | 353 | 2080 | 16023 | 159526 | 2093244 | | 2-reductive | 1 | 2 | 5 | 17 | 65 | 323 | 1960 | 15421 | 155889 | 2064688 | | | 11 | 12 | 13 | 14 | |-------------------|----------|-----------|-------------|---------------| | racks | 36265070 | 836395102 | 25794670618 | | | 2-reductive racks | 35982357 | 832698007 | 25731050861 | 1067863092309 | #### Enumeration #### Theorem Two 2-reductive racks $A = ((A_i)_{i \in I}; (c_{i,j})_{i,j \in I})$ and $B = ((B_i)_{i \in I}; (b_{i,j})_{i,j \in I})$, over the same index set I, are isomorphic if and only if there is a permutation $\pi \in S_n$ and group isomorphisms $\psi_i \colon A_i \to B_{\pi(i)}$ such that $\psi_j(c_{i,j}) = b_{\pi(i),\pi(j)}$. The number of racks (P. Vojtéchovský and S.Y. Yang [2019]) and 2-reductive racks of size n, up to isomorphism | | | 2 | | | 5 | 6 | 7 | 8 | 9 | 10 | |-------------|---|---|---|----|----|-----|------|-------|--------|---------| | racks | 1 | 2 | 6 | 19 | 74 | 353 | 2080 | 16023 | 159526 | 2093244 | | 2-reductive | 1 | 2 | 5 | 17 | 65 | 323 | 1960 | 15421 | 155889 | 2064688 | | n | 11 | 12 | 13 | 14 | |-------------------|----------|-----------|-------------|---------------| | racks | 36265070 | 836395102 | 25794670618 | ? | | 2-reductive racks | 35982357 | 832698007 | 25731050861 | 1067863092309 | ## Example (2-reductive racks of size 3 and 4) - One orbit: $((\mathbb{Z}_3), (1))$. - Two orbits: $((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$ and $((\mathbb{Z}_2, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix})$. - Three orbits: $((\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$. - One orbit: $((\mathbb{Z}_4), (1))$. - Two orbits: $((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_3, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_2), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}).$ - Three orbits: $((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}), ((\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_1), \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}).$ #### Main Theorem #### Theorem Each 2-permutational right cyclic non-degenerate left quasigroup is isotopic to 2-reductive rack under isotopy (id, β ,id), for some bijection β of the set X. • For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that (1) $$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$ for all $x, y, z \in X$ the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic. • For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with $$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$ and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$, is a 2-reductive rack - e * y = y, for any $y \in X$ - the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1). • For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that (1) $$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$ for all $x, y, z \in X$, the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic. • For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with $$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$ and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$, is a 2-reductive rack - e * y = y, for any $y \in X$ - the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1). • For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that (1) $$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$ for all $x, y, z \in X$, the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic. • For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with $$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$ and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$, #### is a 2-reductive rack. - e * y = y, for any $y \in X$ - ▶ the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1). • For a 2-reductive left quasigroup (X, \circ, \setminus) and a bijection β such that (1) $$\beta(y) \circ \beta(x \circ z) = \beta(x) \circ \beta(y \circ z)$$ for all $x, y, z \in X$, the left quasigroup $(X, *, \setminus_*)$ with $x * y = x \circ \beta(y)$ and $x \setminus_* y = \beta^{-1}(x \setminus y)$, is 2-permutational and right cyclic. • For a 2-permutational medial left quasigroup (X, \circ, \setminus) and $e \in X$, the left quasigroup $(X, *, \setminus_*)$ with $$x * y = x \circ L_e^{-1}(y) = x \circ (e \setminus y)$$ and $x \setminus y = L_e(x \setminus y) = e \circ (x \setminus y)$, is a 2-reductive rack. - e * y = y, for any $y \in X$; - ▶ the mapping $L_e: X \to X$; $x \mapsto e \circ x$, satisfies Condition (1). # How to obtain all 2-permutational right cyclic left quasigroups from 2-reductive racks - Take all 2-reductive racks (X, \circ, \setminus) such that there exists $e \in X$ with $L_e = \mathrm{id}$ - ② Take all permutations $\pi \in S_X$ which - satisfy Condition (1) $$\pi(y) \circ \pi(x \circ z) = \pi(x) \circ \pi(y \circ z)$$ for all $x, y, z \in X$, - ▶ are such that $(x \circ \pi(y)) \circ z \neq y \circ z$ for some $x, y, z \in X$ - Onstruct the left quasigroup $(X, *, \setminus_*)$, with $$x * y = x \circ \pi(y)$$ and $x \setminus y = \pi^{-1}(x \setminus y)$ ## Example (1) The 2-permutational right cyclic left quasigroup can be obtain from two non-isomorphic 2-reductive racks: | *1 | 0 | 1 | 2 | 3 | 4 | |----|-----------------------|---|---|---|---| | 0 | 0 | 1 | 2 | 3 | 4 | | 1 | 3 | 1 | 2 | 4 | 0 | | 2 | 4 | 1 | 2 | 0 | 3 | | 3 | 0 | 1 | 2 | 3 | 4 | | 4 | 0
3
4
0
0 | 1 | 2 | 3 | 4 | | *2 | 0 | 1 | 2 | 3 | 4 | |----|----------------------------|---|---|---|---| | 0 | 4 | 1 | 2 | 0 | 3 | | 1 | 0 | 1 | 2 | 3 | 4 | | 2 | 3 | 1 | 2 | 4 | 0 | | 3 | 4 | 1 | 2 | 0 | 3 | | 4 | 0
4
0
3
4
4 | 1 | 2 | 0 | 3 | and ## Example (2) The 2-reductive rack | * | 0 | 1 | _ | 3 | |-------------|------------------|---|---|---| | 0 | 0
2
0
2 | 1 | 2 | 3 | | 1 | 2 | 3 | 0 | 1 | | 1
2
3 | 0 | 1 | 2 | 3 | | 3 | 2 | 3 | 0 | 1 | can be isotopic to two non-isomorphic 2-permutational right cyclic left quasigroups: | 01 | 0 | 1 | 2 | 3 | 02 | 0 | 1 | 2 | 3 | |----|---|---|---|---|----|---|---|---|---| | 0 | | | | | 0 | 1 | 2 | 3 | 0 | | | | 2 | | | 1 | 3 | 0 | 1 | 2 | | | | 0 | | | | | 2 | | | | 3 | 3 | 2 | 1 | 0 | 3 | 3 | 0 | 1 | 2 | # The number of right cyclic 2-permutational left quasigroups of size n | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----------------------------------|---|---|---|----|----|-----|------|-------| | right cyclic l.q. | 1 | 2 | 5 | 23 | 88 | 595 | 3456 | 34528 | | 2-permutational right cyclic l.q. | 1 | 2 | 5 | 19 | 70 | 359 | 2095 | 16332 | | 2-reductive racks | 1 | 2 | 5 | 17 | 65 | 323 | 1960 | 15421 | | 2-permutational, not 2-reductive | 0 | 0 | 0 | 2 | 5 | 36 | 135 | 911 | # There are 23 right cyclic 2-permutational left quasigroups of size 4, up to isomorphism - 17 are 2-reductive - Two are 2-permutational • Two are 3-permutational $((a \circ x) \circ y) \circ z = ((b \circ x) \circ y) \circ z$ • Two are not k-permutational for any $k \in \mathbb{N}$