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Broken surface diagrams
• A surface-link is a closed surface smoothly embedded in R4.
• If a surface-link is oriented, then we call it an oriented

surface-link.
• A broken surface diagram of a surface-link L in R4 is a

generic surface of L into R3 with over/under sheet
information at each double curve.

(a) (b) (c) (d)
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Marked graph diagrams
• A marked graph is a finite spatial regular graph with

4-valent rigid vertices such that each vertex has a marker.
• A diagram of a marked graph in R2 is called a marked graph

diagram or ch-diagram.

¡

L+(¡)

>

>

>

>

>

>

>

>

L¡(¡)

• A marked graph diagram is said to be admissible if both
resolutions L+(Γ) and L−(Γ) are diagrams of trivial links.
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An oriented marked graph diagram of an
oriented surface-link

• An orientation of a marked graph G in R3 is a choice of an
orientation for each edge of G in such a way that every rigid
vertex in G looks like ⌞

⌝
⌜

⌟
or ⌝

⌞
⌟

⌜
, up to rotation.

• A marked graph in R3 is said to be orientable if it admits an
orientation. Otherwise, it is said to be unorientable.
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Jieon Kim(Jointly with S. Kamada, A. Kawauchi and S. Y. Lee) (PNU)Biquandle cocycle invariants of surface-links July 10, 2019 6 / 30



Theorem (Kawauchi-Shibuya-Suzuki, Yoshikawa)
(1) Let L be a surface-link. Then there is an admissible

marked graph diagram Γ s.t. L is presented by Γ.
(2) Let Γ be an admissible marked graph diagram. Then there

is a surface-link L s.t. L is presented by Γ.

Theorem (Kearton-Kurlin, Swenton)
Two marked graph diagrams represent the same surface-link if
and only if they are transformed into each other by a finite
sequence of Yoshikawa moves.
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Yoshikawa moves

Ω 1 :

Ω 2 :

Ω 3 :

Ω 4 :

Ω 4 :

Ω 5 :

Ω 6 :

Ω 6 :

Ω 7 :

Ω 8 :
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Broken surface diagrams associated to marked
graph diagrams
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Biquandles

Definition
A biquandle X is a set with two binary operations ▷,▷ : X ×X → X
such that
(1) For any x ∈ X , x▷x = x▷x.
(2) Two binary operations ▷,▷ are right invertible.
(3) The map H : X ×X → X ×X defined by (x,y) 7→ (y▷x,x▷y) is

invertible.
(4) For any x,y,z ∈ X ,

(x▷y)▷(z▷y) = (x▷z)▷(y▷z),
(x▷y)▷(z▷y) = (x▷z)▷(y▷z),
(x▷y)▷(z▷y) = (x▷z)▷(y▷z).
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Biquandle colorings of link diagrams

Definition
Let X be a biquandle. A (biquandle) coloring on an oriented link
diagram is a function C : S → X , where S is the set of semi-arcs
in the diagram, satisfying the condition depicted in the below
figures.
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Biquandle colorings of broken surface
diagrams

Definition
A (biquandle) coloring on an oriented broken surface diagram is
a function C : S → X , where S is the set of semi-sheets,
satisfying the following condition at the double point set.
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(b ) (c )
= ( c) ( c)

=
( c) ( c)
( b) (c )

=
(c ) (b )
(c ) ( b)
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Biquandle coloring of marked graph diagrams

Definition
Let Γ be an oriented marked graph diagram and X a finite
biquandle. A coloring of Γ is C : S(Γ)→ X , where S(Γ) is the set
of semi-arcs in Γ, satisfying the following conditions:
(1) For each crossing c ∈C(Γ),

C (s3) = C (s1)▷C (s2), C (s4) = C (s2)▷C (s1).

⌝

⌞

⌟

⌟

s4

s3

s1

s2 c
⌞

⌟⌞
⌜

s3

s2s1

s4 c
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Definition (continued)
(2) For each marked vertex v ∈V (Γ),

C (s1) = C (s2) = C (s3) = C (s4).

⌞

⌝
⌜

⌟ s4

s1

s3

s2

v

⌝
⌞
⌟

⌜ s4

s1

s3

s2

v

We denote by ColX(Γ) the set of colorings of Γ.
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Example
Let

M = [{m1
i, j}1≤i, j≤4|{m2

i, j}1≤i, j≤4] =


1 4 2 3 1 1 1 1
2 3 1 4 3 3 3 3
3 2 4 1 4 4 4 4
4 1 3 2 2 2 2 2

 ,

and X = {1,2,3,4} the biquandle, where i▷ j = m1
i, j and i▷ j = m2

i, j.
Let Γn be a marked graph diagram of n twist spun trefoil knot.

T

n-times

1-twist
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Colorings of T

1

2

3

4
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¡3

#ColX(Γ3k−2) = #ColX(Γ3k−1) = 4, #ColX(Γ3k) = 4+(4×3) = 16
for k ≥ 1.
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Biquandle cocycles
Let X be a finite biquandle and A an abelian group with the
identity element 1. Carter-Elhamdadi-Saito defined biquandle
homology group HQ

∗ (X ;A) and the biquandle cohomology group
H∗

Q(X ;A).

Note that a biquandle 2-cocycle f : CQ
2 (X)→ A satisfies

(1) f (x,x) = 1 for all x,y ∈ X .
(2) f (y,z) f (x,y) f (x▷y,z▷y) = f (x,z) f (y▷x,z▷x) f (x▷z,y▷z), for each

x,y,z ∈ X .

Note that a biquandle 3-cocycle f : CQ
3 (X)→ A satisfies

(1) f (x,x,y) = 1 and f (x,y,y) = 1 for all x,y ∈ X .
(2) f (y,z,w) f (x,y,w) f (x▷y,z▷y,w▷y) f (x▷w,y▷w,z▷w)

= f (x,z,w) f (x,y,z) f (y▷x,z▷x,w▷x) f (x▷z,y▷z,w▷z), for each
x,y,z,w ∈ X .
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Biquandle cocycle invariants of links

Let D be an oriented diagram of a link L and a coloring C of D
given. Let θ ∈ Z2

Q(X ;A).

b

b

b

θ (a, b) θ (a, b)−1

b

b

The partition function of D is defined by

Φθ (D) = ∑
C

∏
c

Bθ (c,C ) ∈ Z[A].
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Theorem (Carter-Elhamdadi-Saito)
Let L be a link and D a diagram of L. Then the partition function
Φθ (D) is an invariant of L, which is called the biquandle cocycle
invariant of L and denoted by Φθ (L).
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Biquandle cocycle invariants of surface-links
Let B be an oriented diagram of a surface-link L and a coloring
C of B given. Let θ ∈ Z3

Q(X ;A).

a

c

bb

b

c

c

cc

(b ) (c )
= ( c) ( c)

=
( c) ( c)
( b) (c )

=
(c ) (b )
(c ) ( b)

θ(a,b,c)

The partition function of B is defined by

Φθ (B) = ∑
C

∏
τ

Bθ (τ,C ) ∈ Z[A].
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Theorem
Let L be a surface-link and B a diagram of L . Then the
partition function Φθ (B) is an invariant of L , which is called the
biquandle cocycle invariant of L and denoted by Φθ (L ).
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Biquandle cocycle invariants via mgd
Let D be a marked graph diagram of a surface-link.
There are two sequences D1 = L+(D)→ ·· · → Dm = Or,
D′

1 = L−(D)→ ··· → D′
n = Os.

Define I3
+ = {i|Di → Di+1 is a Reidemeister move 3} and

I3
− = { j|D′

j → D′
j+1 is a Reidemeister move 3}.

Let i ∈ I3
+. (resp., j ∈ I3

−.) Exactly one of Di and Di+1 (resp., D′
j

and D′
i+1) has the region from which all normal orientations point

outward such that the number of intersecting semi-arcs is 3. Let
the region call the source region of i (resp., j).
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Definition
Let L be an oriented surface-link and Γ a marked graph
diagram of L . Let C : S(Γ)→ X be a coloring of Γ and
θ ∈ Z3

Q(X ;A).

(1) Let i ∈ I3
+. The (Boltzman) weight Bθ (i,C ), for i ∈ I3

+, is
defined by

Bθ (i,C ) = θ(x1,x2,x3)
εtm(i)εb(i),

where x1, x2 and x3 are colors of the bottom, middle and top
arcs, respectively, those bound the source region of i.

"tm(i)
=1

"tm(i)
=¡1

"b(i)=¡1"b(i)=1

c   i

c   i

c   i

c   i
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Definition (continued)
(2) Let j ∈ I3

−. The (Boltzman) weight Bθ ( j,C ), for j ∈ I3
−, is

defined by

Bθ ( j,C ) = θ(x1,x2,x3)
−εtm( j)εb( j),

where x1, x2 and x3 are colors of the bottom, middle and top
arcs, respectively, those bound the source region of j.
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Definition
Let Γ be a marked graph diagram of an oriented surface-link L .
The partition function or state-sum (associated with θ ) of a
marked graph diagram Γ is defined by the state-sum expression

Φθ (Γ) = ∑
C∈ColX (Γ)

∏
x∈I3

+∪I3
−

Bθ (x,C ),

where Bθ (x,C ) is a weight of x ∈ I3
+∪ I3

−.

Theorem (Kamada-Kawauchi-K.-Lee)
Let L be an oriented surface-link and Γ a marked graph
diagram of L . Then for any θ ∈ Z3

Q(X ;A), Φθ (L ) = Φθ (Γ).
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Example
Let

X =

[
1 4 2 3 1 1 1 1
2 3 1 4 3 3 3 3
3 2 4 1 4 4 4 4
4 1 3 2 2 2 2 2

]
,

and θ = χ(1,4,1)χ(1,4,3)χ(2,4,1)χ(2,4,3)χ(3,2,1)χ(3,2,3)χ(4,2,1)χ(4,2,3) a
cocycle with the coefficient Z2 =< t|t2 = 1 >, where χ(a,b,c)(x,y,z)
is defined to be t if (x,y,z) = (a,b,c) and 1 otherwise.

L+(Γ)

→ → →

→ → →
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→ → →

L−(Γ)

→ →

Then ∏x∈I3
+∪I3

−
Bθ (x,C ) = θ(1,1,4)θ(1,1,3)θ(1,1,2)θ(1,2,1)

θ(1,4,1)θ(1,3,1)θ(2,1,2)−1θ(4,1,4)−1θ(3,1,3)−1= t, where
θ = χ(1,4,1)χ(1,4,3)χ(2,4,1)χ(2,4,3)χ(3,2,1)χ(3,2,3)χ(4,2,1)χ(4,2,3) .

The biquandle cocycle invariant is

Φθ (Γ) = ∑
C∈ColX (Γ)

∏
x∈I3

+∪I3
−

Bθ (x,C ) = 4+12t.
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