Biquandle cocycle invariants of surface-links

Jieon Kim (Jointly with S. Kamada, A. Kawauchi and S. Y. Lee)

Pusan National University, Busan, Korea

July 10, 2019

Budapest University of Technology and Economics, Hungary

Contents

Representations of Surface-Links

Biquandle Cocycle Invariants

Contents

- Representations of Surface-Links
- Biquandle Cocycle Invariants

Broken surface diagrams

- A surface-link is a closed surface smoothly embedded in \mathbb{R}^4 .
- If a surface-link is oriented, then we call it an oriented surface-link.
- A broken surface diagram of a surface-link \mathscr{L} in \mathbb{R}^4 is a generic surface of \mathscr{L} into \mathbb{R}^3 with over/under sheet information at each double curve.

Marked graph diagrams

- A marked graph is a finite spatial regular graph with
 4-valent rigid vertices such that each vertex has a marker.
- A diagram of a marked graph in \mathbb{R}^2 is called a marked graph diagram or ch-diagram.

• A marked graph diagram is said to be admissible if both resolutions $L_+(\Gamma)$ and $L_-(\Gamma)$ are diagrams of trivial links.

An oriented marked graph diagram of an oriented surface-link

- An orientation of a marked graph G in \mathbb{R}^3 is a choice of an orientation for each edge of G in such a way that every rigid vertex in G looks like \bigcap or \bigcap , up to rotation.
- A marked graph in \mathbb{R}^3 is said to be orientable if it admits an orientation. Otherwise, it is said to be unorientable.

Theorem (Kawauchi-Shibuya-Suzuki, Yoshikawa)

- (1) Let $\mathscr L$ be a surface-link. Then there is an admissible marked graph diagram Γ s.t. $\mathscr L$ is presented by Γ .
- (2) Let Γ be an admissible marked graph diagram. Then there is a surface-link $\mathcal L$ s.t. $\mathcal L$ is presented by Γ .

Theorem (Kearton-Kurlin, Swenton)

Two marked graph diagrams represent the same surface-link if and only if they are transformed into each other by a finite sequence of Yoshikawa moves.

Yoshikawa moves

Broken surface diagrams associated to marked graph diagrams

Contents

- Representations of Surface-Links
- Biquandle Cocycle Invariants

Biquandles

Definition

A biquandle X is a set with two binary operations $\triangleright, \triangleright : X \times X \to X$ such that

- (1) For any $x \in X$, $x \underline{\triangleright} x = x \overline{\triangleright} x$.
- (2) Two binary operations $\triangleright, \overline{\triangleright}$ are right invertible.
- (3) The map $H: X \times X \to X \times X$ defined by $(x,y) \mapsto (y \overline{\triangleright} x, x \underline{\triangleright} y)$ is invertible.
- (4) For any $x, y, z \in X$,

$$(x \underline{\triangleright} y) \underline{\triangleright} (z \underline{\triangleright} y) = (x \underline{\triangleright} z) \underline{\triangleright} (y \overline{\triangleright} z),$$

$$(x \underline{\triangleright} y) \overline{\triangleright} (z \underline{\triangleright} y) = (x \overline{\triangleright} z) \underline{\triangleright} (y \overline{\triangleright} z),$$

$$(x \overline{\triangleright} y) \overline{\triangleright} (z \overline{\triangleright} y) = (x \overline{\triangleright} z) \overline{\triangleright} (y \underline{\triangleright} z).$$

Biquandle colorings of link diagrams

Definition

Let X be a biquandle. A (biquandle) coloring on an oriented link diagram is a function $\mathscr{C}: S \to X$, where S is the set of semi-arcs in the diagram, satisfying the condition depicted in the below figures.

Biquandle colorings of broken surface diagrams

Definition

A (biquandle) coloring on an oriented broken surface diagram is a function $\mathscr{C}: S \to X$, where S is the set of semi-sheets, satisfying the following condition at the double point set.

Biquandle coloring of marked graph diagrams

Definition

Let Γ be an oriented marked graph diagram and X a finite biquandle. A coloring of Γ is $\mathscr{C}: S(\Gamma) \to X$, where $S(\Gamma)$ is the set of semi-arcs in Γ , satisfying the following conditions:

(1) For each crossing $c \in C(\Gamma)$,

Definition (continued)

(2) For each marked vertex $v \in V(\Gamma)$,

$$\mathscr{C}(s_1) = \mathscr{C}(s_2) = \mathscr{C}(s_3) = \mathscr{C}(s_4).$$

We denote by $Col_X(\Gamma)$ the set of colorings of Γ .

Example

Let

$$M = \left[\{ m_{i,j}^1 \}_{1 \le i,j \le 4} | \{ m_{i,j}^2 \}_{1 \le i,j \le 4} \right] = \begin{bmatrix} 1 & 4 & 2 & 3 & 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 4 & 3 & 3 & 3 & 3 \\ 3 & 2 & 4 & 1 & 4 & 4 & 4 & 4 \\ 4 & 1 & 3 & 2 & 2 & 2 & 2 & 2 \end{bmatrix},$$

and $X = \{1,2,3,4\}$ the biquandle, where $i \trianglerighteq j = m_{i,j}^1$ and $i \trianglerighteq j = m_{i,j}^2$. Let Γ_n be a marked graph diagram of n twist spun trefoil knot.

Colorings of T

 $\#\mathrm{Col}_X(\Gamma_{3k-2}) = \#\mathrm{Col}_X(\Gamma_{3k-1}) = 4, \ \#\mathrm{Col}_X(\Gamma_{3k}) = 4 + (4 \times 3) = 16$ for $k \ge 1$.

Biquandle cocycles

Let X be a finite biquandle and A an abelian group with the identity element 1. Carter-Elhamdadi-Saito defined biquandle homology group $H_*^{\mathcal{Q}}(X;A)$ and the biquandle cohomology group $H_Q^*(X;A)$.

Note that a biquandle 2-cocycle $f: C_2^Q(X) \to A$ satisfies

- (1) f(x,x) = 1 for all $x, y \in X$.
- (2) $f(y,z)f(x,y)f(x \trianglerighteq y, z \trianglerighteq y) = f(x,z)f(y \trianglerighteq x, z \trianglerighteq x)f(x \trianglerighteq z, y \trianglerighteq z)$, for each $x,y,z \in X$.

Note that a biquandle 3-cocycle $f: C_3^Q(X) \to A$ satisfies

- (1) f(x,x,y) = 1 and f(x,y,y) = 1 for all $x,y \in X$.
- (2) $f(y,z,w)f(x,y,w)f(x \underline{\triangleright} y, z \overline{\triangleright} y, w \overline{\triangleright} y)f(x \underline{\triangleright} w, y \underline{\triangleright} w, z \underline{\triangleright} w)$ = $f(x,z,w)f(x,y,z)f(y \overline{\triangleright} x, z \overline{\triangleright} x, w \overline{\triangleright} x)f(x \underline{\triangleright} z, y \underline{\triangleright} z, w \overline{\triangleright} z)$, for each $x,y,z,w \in X$.

Biquandle cocycle invariants of links

Let D be an oriented diagram of a link L and a coloring $\mathscr C$ of D given. Let $\theta \in Z^2_O(X;A)$.

The partition function of *D* is defined by

$$\Phi_{\theta}(D) = \sum_{\mathscr{C}} \prod_{c} B_{\theta}(c,\mathscr{C}) \in \mathbb{Z}[A].$$

Theorem (Carter-Elhamdadi-Saito)

Let L be a link and D a diagram of L. Then the partition function $\Phi_{\theta}(D)$ is an invariant of L, which is called the biquandle cocycle invariant of L and denoted by $\Phi_{\theta}(L)$.

Biquandle cocycle invariants of surface-links

Let \mathscr{B} be an oriented diagram of a surface-link \mathscr{L} and a coloring \mathscr{C} of \mathscr{B} given. Let $\theta \in Z_O^3(X;A)$.

The partition function of \mathcal{B} is defined by

$$\Phi_{\theta}(\mathscr{B}) = \sum_{\mathscr{C}} \prod_{\tau} B_{\theta}(\tau,\mathscr{C}) \in \mathbb{Z}[A].$$

Theorem

Let $\mathscr L$ be a surface-link and $\mathscr B$ a diagram of $\mathscr L$. Then the partition function $\Phi_{\theta}(\mathscr B)$ is an invariant of $\mathscr L$, which is called the biquandle cocycle invariant of $\mathscr L$ and denoted by $\Phi_{\theta}(\mathscr L)$.

Biquandle cocycle invariants via mgd

Let D be a marked graph diagram of a surface-link.

There are two sequences
$$D_1 = L_+(D) \to \cdots \to D_m = O^r$$
, $D_1' = L_-(D) \to \cdots \to D_n' = O^s$.

Define $I_+^3 = \{i | D_i \rightarrow D_{i+1} \text{ is a Reidemeister move } 3\}$ and $I_-^3 = \{j | D_j' \rightarrow D_{j+1}' \text{ is a Reidemeister move } 3\}.$

Let $i \in I_+^3$. (resp., $j \in I_-^3$.) Exactly one of D_i and D_{i+1} (resp., D_j' and D_{i+1}') has the region from which all normal orientations point outward such that the number of intersecting semi-arcs is 3. Let the region call the source region of i (resp., j).

Definition

Let $\mathscr L$ be an oriented surface-link and Γ a marked graph diagram of $\mathscr L$. Let $\mathscr C:S(\Gamma)\to X$ be a coloring of Γ and $\theta\in Z_O^3(X;A)$.

(1) Let $i \in I^3_+$. The (Boltzman) weight $B_{\theta}(i, \mathcal{C})$, for $i \in I^3_+$, is defined by

$$B_{\theta}(i,\mathscr{C}) = \theta(x_1,x_2,x_3)^{\varepsilon_{lm}(i)\varepsilon_b(i)},$$

where x_1 , x_2 and x_3 are colors of the bottom, middle and top arcs, respectively, those bound the source region of i.

Definition (continued)

(2) Let $j \in I^3_-$. The (Boltzman) weight $B_{\theta}(j,\mathscr{C})$, for $j \in I^3_-$, is defined by

$$B_{\theta}(j,\mathscr{C}) = \theta(x_1,x_2,x_3)^{-\varepsilon_{tm}(j)\varepsilon_b(j)},$$

where x_1 , x_2 and x_3 are colors of the bottom, middle and top arcs, respectively, those bound the source region of j.

Definition

Let Γ be a marked graph diagram of an oriented surface-link \mathscr{L} . The partition function or state-sum (associated with θ) of a marked graph diagram Γ is defined by the state-sum expression

$$\Phi_{\theta}(\Gamma) = \sum_{\mathscr{C} \in \operatorname{Col}_{X}(\Gamma)} \prod_{x \in I_{+}^{3} \cup I_{-}^{3}} B_{\theta}(x, \mathscr{C}),$$

where $B_{\theta}(x,\mathscr{C})$ is a weight of $x \in I^3_+ \cup I^3_-$.

Theorem (Kamada-Kawauchi-K.-Lee)

Let $\mathscr L$ be an oriented surface-link and Γ a marked graph diagram of $\mathscr L$. Then for any $\theta \in Z^3_O(X;A), \, \Phi_{\theta}(\mathscr L) = \Phi_{\theta}(\Gamma).$

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Example

Let

$$X = \left[\begin{smallmatrix} 1 & 4 & 2 & 3 & | & 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 4 & | & 3 & 3 & 3 & 3 \\ 3 & 2 & 4 & 1 & | & 4 & | & 4 & | & 4 \\ 4 & 1 & 3 & 2 & | & 2 & | & 2 & | & 2 \end{smallmatrix} \right],$$

and $\theta = \chi_{(1,4,1)}\chi_{(1,4,3)}\chi_{(2,4,1)}\chi_{(2,4,3)}\chi_{(3,2,1)}\chi_{(3,2,3)}\chi_{(4,2,1)}\chi_{(4,2,3)}$ a cocycle with the coefficient $\mathbb{Z}_2 = < t | t^2 = 1 >$, where $\chi_{(a,b,c)}(x,y,z)$ is defined to be t if (x,y,z) = (a,b,c) and 1 otherwise.

Then
$$\prod_{x \in I_+^3 \cup I_-^3} B_{\theta}(x, \mathscr{C}) = \theta(1, 1, 4) \theta(1, 1, 3) \theta(1, 1, 2) \theta(1, 2, 1)$$

 $\theta(1, 4, 1) \theta(1, 3, 1) \theta(2, 1, 2)^{-1} \theta(4, 1, 4)^{-1} \theta(3, 1, 3)^{-1} = t$, where $\theta = \chi_{(1,4,1)} \chi_{(1,4,3)} \chi_{(2,4,1)} \chi_{(2,4,3)} \chi_{(3,2,1)} \chi_{(3,2,3)} \chi_{(4,2,1)} \chi_{(4,2,3)}$.

The biquandle cocycle invariant is

$$\Phi_{\theta}(\Gamma) = \sum_{\mathscr{C} \in \operatorname{Col}_{X}(\Gamma)} \prod_{x \in I_{-}^{3} \cup I_{-}^{3}} B_{\theta}(x, \mathscr{C}) = 4 + 12t.$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ ∽)٩♡

Thank you