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Projective representations for groups

A projective representation of a group G is a set of matrices
{κ(g)}g∈G such that

κ(g)κ(h) = α(g , h)κ(gh),

where α(g , h) is a scalar. Informally, the matrices are projectively
equivalent. α(g , h) is called a factor set.
Example: G = V4 = {e, a, b, ab}. This has a projective
representation κ of degree 2:

κ(e) =

[
1 0
0 1

]
, κ(a) =

[
i 0
0 −i

]
, κ(b) =

[
0 1
1 0

]
, κ(ab) =

[
0 i
−i 0

]
.



The representations κ1 and κ2 are equivalent if there exist
elements c(gi ) in C and an invertible matrix P in Mm(K ) such that

κ1(g) = c(g)P−1κ2(g)P

for all g ∈ G . The associativity condition implies that each factor
set α must satisfy

α(g1, g2)α(g1g2, g3) = α(g1, g2g3)α(g2, g3)

and if κ1 and κ2 are equivalent as above their factor sets α1, α2

are related by

α1(g1, g2) = c(g1, g2)α2(g1, g2)

where

c(g1, g2) =
c(g1)c(g2)

c(g1g2)
.

In the language of cohomology, α is a 2-cocycle and c(g1, g2) is a
coboundary.



Three approaches to the Schur multiplier
(1) The cocycles modulo the coboundaries
(2) A Stem extension of a group G is an exact sequence

{0} → N → H → G → {e}

where N ⊆ G ′ ∩ Z (G ). The Schur multiplier is the (unique) N
where |H| is maximal.
In this case H is a Darstellungsgruppe for G (or a Schur cover).
(3) If

{e} → R → F → G → {e}

is a free presentation of the group G then

M ' R ∩ F ′

[R,F ]
.



General remarks about projective representations of groups

(1) A lot of the results are in the original papers of Schur.
(2) There are two volumes of Karpilovsky on projective
representations
(these are intimidating!)
However, reviewers suggest that it is hard to sort out the proofs
which are translations of those for linear representations and those
which are difficult.
(3) They have appeared in the theory of finite frames.



Reasons to consider the extension to loops

.
(1) Insight into the group theory
(2) For which varieties of loops do Schur covers exist?
(3) How do the three ways of looking at the Schur multiplier
relate?
.....



What happens for Moufang loops?

(1) Factor sets:
The following relation is imposed on a factor set for a Moufang
loop in the same way that the cocycle condition is obtained for
groups:

f (z , y)f (x , zy)f (z , (x(zy)) = f (z , x)f (zx , z)f (((zx)z), y).

(2) If a stem extension is defined by the exact sequence of
Moufang loops

{0} → N → H → Q → {e}
with N ⊆ H ′ ∩ Z (H) is there a maximum stem extension (a ”Schur
cover”)?

(3) Suppose
{e} → R → FM → Q → {e}

is now an exact sequence in the category of Moufang loops. Here
FM is a free Moufang loop and Q is a Moufang loop.

Is there a formula for ”
R∩F ′

M
[R,F ] ”?



Example

Let G be the Klein group V4 = {e, u, v , uv}. The dihedral group
D4 is a covering group for G , i.e. there is a projection µ : D4 → G
with kernel M, the Schur multiplier. In this case if

D8 =< a, b : a4 = b2 = e, bab = a3 >

then M = {e, a2}. The character table of D4 is

Class {e} {a2} {a, a3} {b, a2b} {ab, a3b}
χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

.

The characters χ1, ..., χ4 correspond to ordinary representations of
G and χ5 corresponds to a projective representation κ of G .



Projective characters for groups

1) Can choose a unitary cocycle α (α(g , h)m = 1 for all g , h in G )
2) Define the character χκ(g) as Tr(κ(g)).
3) For unitary representations

χκ(g−1) = α(g , g−1)χκ(g).

4) Suppose κ1 and κ2 are projective reps with the same cocycle α.
Then
(a) If χκ1 = χκ2 then κ1 ∼= κ2. Define
< φ,ψ >= 1

|G |
∑

g∈G φ(g)ψ(g).

(b) < χκ1 , χκ2 >= DimC(HomG (κ1, κ2))
(c) If G is abelian then all finite dimensional irreducible projective
representations of G with cocycle α have the same degree.



projective characters continued

5) The α-regular representation R of G has a basis {eg}g∈G
such that

R(h)(eg ) = α(h, g)ehg .

6) R decomposes as ⊕κ∈RepαGκ
⊕ deg(κ)

7) There is a space Hα of α-class functions on G . A subset Lα of
the conjugacy classes of G is defined (the α-classes) and the
number of inequivalent irreducible projective representations with
cocycle α is lα = |Lα|.
8) Induced α-characters are defined. A Mackey criterion is
available to decide whether an induced character is irreducible.



Some things to consider

.
(1) Questions on general projective characters (for example in
association schemes) could arise.
(2) In some senses projective representations are more ”natural”
than ordinary representations of groups
(3) The Schur multiplier is an example of a Baer invariant. These
have been used to obtain cohomology theories. It seems intriguing
to investigate these for varieties of Moufang loops.
(4) Stephen Gagola III has a theory of representations of (some)
Moufang loops by Zorn matrices. Actual projective representations
should exist for these loops.



Some examples in the loop case

Take the Chein loop MG2 corresponding to the group G . If D is a
Schur cover of G then MD2 gives rise to a stem extension of G .
This need not be maximal.
If G is the Klein 4-group then as is well-known
MG2 = C2 × C2 × C2 which has a Schur multiplier also isomorphic
to C2 × C2 × C2. Thus a Schur cover of MG2 has order 64. A
computer search has found that there are many Moufang loops Mi

of order 64 which may be regarded as loop covers in that there is
an exact sequence

{0} → M → Mi → MG2→ {e}

with M ⊆ G ′ ∩ Z (G ). It seems as though a general result is that
for an arbitrary group G with Schur cover D the loop MD2 gives
rise to a stem cover of MG2.



The Baer invariant

If V is a variety of groups defined by a set U = {ui}ri=1 of words in
variables {xj}tj=1 and G is an arbitary group, the verbal subgroup
V (G ) of G is the subgroup of G which is generated by the values
of the words in U on sets of elements of G . The marginal
subgroup VM(G ) of G is the subgroup generated by the elements
g such that for each word ui (x1, x2, ..., xs)

ui (x1g , x2, ..., xs) = ui (x1, x2g , ..., xs) = ... = ui (x1, x2, ..., xsg).

For a free presentation

{e} → R → F → G → {e}
define the subgroup [RV ∗F ] as the subgroup generated by

ui (f1, f2, ..., fi r , fi+1, ..., fs)[ui (f1, f2, ..., fi , fi+1, ..., fs)]−1

for all r ∈ R, fi ∈ F , ui ∈ U. Then the Baer invariant is

R ∩ V (F )

[RV ∗F ]
.



If V is the variety of abelian groups then the Baer invariant is
precisely

R ∩ F ′

[R,F ]
.

If V is the variety of groups pof nilpotency class c then the Baer
invriant is

R ∩ γc+1(F )

[R,c F ]

This has been called the c-nilpotent multiplier.



Schur-Baer varieties

V is called a Schur-Baer variety if for any group G for which the
marginal factor group G/V ∗(G ) is finite then V (G ) is finite and
|V (G )| divides the a power of |G/V ∗(G )|.
Schur proved that A is a Schur-Baer variety.
The following are equivalent
(1) V is a Schur-Baer variety
(2) For every finite group G then the Baer invariant VM(G ) hs
order dividing a power of |G |.



Some questions
(1) What is the ”loop multiplier” of a commutative Moufang loop?
(2) If the variety of commutative Moufang loops is substituted for
A, does this change the Baer invariant?
etc, etc,


