Yang-Baxter equation and a congruence of biracks

Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Budapest, 10th July 2019

Yang-Baxter equation

Definition

Let V be a vector space. A homomorphism $R:V\otimes V\to V\otimes V$ is called a *solution of Yang–Baxter equation* if it satisfies

$$(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R).$$

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \to X \times X$ is called a set-theoretic solution of Yang–Baxter equation if it satisfies

$$(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$$

Examples

• Let (S, \cdot) be an idempotent semigroup. Then

$$r:(a,b)\mapsto(a,a\cdot b)$$

is a set-theoretic solution on S.

• Let (L, \vee, \wedge) be a distributive lattice. Then

$$r:(a,b)\mapsto (a\wedge b,a\vee b)$$

is an idempotent (that means $r^2 = r$) set-theoretic solution on I

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \to X \times X$ is called a set-theoretic solution of Yang–Baxter equation if it satisfies

$$(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$$

Examples

• Let (S, \cdot) be an idempotent semigroup. Then

$$r:(a,b)\mapsto(a,a\cdot b)$$

is a set-theoretic solution on S.

• Let (L, \vee, \wedge) be a distributive lattice. Then

$$r:(a,b)\mapsto (a\wedge b,a\vee b)$$

is an idempotent (that means $r^2 = r$) set-theoretic solution on L.

Non-degenerate solutions

Definition

A solution $r:(x,y)\mapsto (\sigma_x(y),\tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x,y\in X$.

Fact

If a solution r is non-degenerate then r is a bijection of X^2 .

Example

Let (G, \cdot) be a group. Then

$$r_1: (a,b) \mapsto (a^{-1}ba, a)$$

 $r_2: (a,b) \mapsto (ab^{-1}a^{-1}, ab^2)$

are both non-degenerate solutions.

Non-degenerate solutions

Definition

A solution $r:(x,y)\mapsto (\sigma_x(y),\tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x,y\in X$.

Fact

If a solution r is non-degenerate then r is a bijection of X^2 .

Example

Let (G, \cdot) be a group. Then

$$r_1: (a,b) \mapsto (a^{-1}ba,a)$$

 $r_2: (a,b) \mapsto (ab^{-1}a^{-1},ab^2)$

are both non-degenerate solutions.

Non-degenerate solutions

Definition

A solution $r:(x,y)\mapsto (\sigma_x(y),\tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x,y\in X$.

Fact

If a solution r is non-degenerate then r is a bijection of X^2 .

Example

Let (G, \cdot) be a group. Then

$$r_1: (a,b) \mapsto (a^{-1}ba,a)$$

 $r_2: (a,b) \mapsto (ab^{-1}a^{-1},ab^2)$

are both non-degenerate solutions.

Involutive solutions

Definition

A solution r is called *involutive* if $r^2 = id_{X^2}$.

Observation

If
$$r = (\sigma_x, \tau_y)$$
 is involutive then $\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$.

Example

If $\sigma_{\sigma_x(y)} = \sigma_y = \tau_y^{-1}$ then (σ_x, τ_y) is an involutive solution.

Example

σ	1	2	3	τ	1	2	3
1	1	2	3	1	1	1	2
2	1	2	3	2	2	2	1
3	2	1	3	3	3	3	3

Involutive solutions

Definition

A solution r is called *involutive* if $r^2 = id_{X^2}$.

Observation

If
$$r = (\sigma_x, \tau_y)$$
 is involutive then $\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$.

Example

If $\sigma_{\sigma_x(y)} = \sigma_y = \tau_y^{-1}$ then (σ_x, τ_y) is an involutive solution.

Example

		2				2	
1	1	2	3	1	1	1	2
2	1	2	3	2	2	1 2	1
3	2	2 2 1	3	3	3	3	3

Vocabulary

universal algebra setting support of a solution identity idempotent subsolution (left) ideal projection algebra congruence quadratic set
condition
square-free
restricted solution
(left) invariant subset
trivial solution
equivalence such that the
blocks form a solution

Retraction relation

Definition

Let $r = (\sigma_x, \tau_y)$ be an involutive solution on a set X. We define a relation \sim on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Definition

Let r be an involutive solution on a set X. We denote by Ret(X) the factor solution X/\sim .

Conjecture [T. Gateva-Ivanova]

Let r be a finite involutive solution satisfying $\sigma_x(x) = \tau_x(x) = x$ Then there exists $k \in \mathbb{N}$ such that $|\text{Ret}^k(X)| = 1$.

Retraction relation

Definition

Let $r = (\sigma_x, \tau_y)$ be an involutive solution on a set X. We define a relation \sim on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Definition

Let r be an involutive solution on a set X. We denote by Ret(X) the factor solution X/\sim .

Conjecture [T. Gateva-Ivanova]

Let r be a finite involutive solution satisfying $\sigma_x(x) = \tau_x(x) = x$ Then there exists $k \in \mathbb{N}$ such that $|\text{Ret}^k(X)| = 1$.

Retraction relation

Definition

Let $r = (\sigma_x, \tau_y)$ be an involutive solution on a set X. We define a relation \sim on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Definition

Let r be an involutive solution on a set X. We denote by Ret(X) the factor solution X/\sim .

Conjecture [T. Gateva-Ivanova]

Let r be a finite involutive solution satisfying $\sigma_x(x) = \tau_x(x) = x$. Then there exists $k \in \mathbb{N}$ such that $|\text{Ret}^k(X)| = 1$.

Retraction is a congruence

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let r be an involutive solution on a finite set X. Then there is a well-defined involutive solution on the set X/\sim .

Sketch of the proof.

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Show that $x \neq y$, for all $x, y \in G$.
- Prove that $f: x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group $G/\operatorname{Ker} f$ belongs to the solution X/\sim .

Retraction is a congruence

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let r be an involutive solution on a finite set X. Then there is a well-defined involutive solution on the set X/\sim .

Sketch of the proof.

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Show that $x \neq y$, for all $x, y \in G$.
- Prove that $f: x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group $G/\operatorname{Ker} f$ belongs to the solution X/\sim .

Definition of a birack

Definition

A *birack* is an algebra $(X, \circ, \bullet, \setminus, /)$ that satisfies

$$x \setminus (x \circ y) = y, \qquad (x \bullet y)/y = x,$$

$$x \circ (x \setminus y) = y, \qquad (x/y) \bullet y = x,$$

$$x \circ (y \circ z) = (x \circ y) \circ ((x \bullet y) \circ z),$$

$$(x \circ y) \bullet ((x \bullet y) \circ z) = (x \bullet (y \circ z)) \circ (y \bullet z),$$

$$(x \bullet y) \bullet z = (x \bullet (y \circ z)) \bullet (y \bullet z).$$

A birack is said to be involutive if it satisfies

$$(x \circ y) \circ (x \bullet y) = x,$$
 $(x \circ y) \bullet (x \bullet y) = y.$

Observation

If $(X, \circ, \bullet, \setminus, /)$ is a birack then $(x \circ y, x \bullet y)$ is a solution. Conversely, if (σ, τ) is a solution then, by setting $x \circ y = \sigma_x(y)$, $x \bullet y = \tau_y(x)$, $x \setminus y = \sigma_x^{-1}(y)$ and $x/y = \tau_y^{-1}(x)$, we obtain a birack.

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Гheorem (P. Etingof, T. Schedler, A. Soloviev)

If a birack is finite and involutive then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

If a birack is finite and involutive then ~ is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

If a birack is finite and involutive then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

If a birack is finite and involutive then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \approx on X as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

 \approx is a congruence of every birack.

Proof.

For each $x \approx x'$, $y \approx y'$ and $z \in X$, we prove

$$(x \circ y) \circ z = (x' \circ y') \circ z$$
 $z \bullet (x \circ y) = z \bullet (x' \circ y')$

$$(x \bullet y) \circ z = (x' \bullet y') \circ z$$
 $z \bullet (x \bullet y) = z \bullet (x' \bullet y')$

$$(x \setminus y) \circ z = (x' \setminus y') \circ z$$
 $z \bullet (x \setminus y) = z \bullet (x' \setminus y')$

$$(x/y) \circ z = (x'/y') \circ z$$
 $z \bullet (x/y) = z \bullet (x'/y')$

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \approx on X as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

 \approx is a congruence of every birack.

Proof.

For each $x \approx x'$, $y \approx y'$ and $z \in X$, we prove

$$(x \circ y) \circ z = (x' \circ y') \circ z$$
 $z \bullet (x \circ y) = z \bullet (x' \circ y')$

$$(x \bullet y) \circ z = (x' \bullet y') \circ z$$
 $z \bullet (x \bullet y) = z \bullet (x' \bullet y')$

$$(x \setminus y) \circ z = (x' \setminus y') \circ z$$
 $z \bullet (x \setminus y) = z \bullet (x' \setminus y')$

$$(x/y) \circ z = (x'/y') \circ z$$
 $z \bullet (x/y) = z \bullet (x'/y')$

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \setminus, /)$ be a birack. We define a relation \approx on X as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

 \approx is a congruence of every birack.

Proof.

For each $x \approx x'$, $y \approx y'$ and $z \in X$, we prove

$$(x \circ y) \circ z = (x' \circ y') \circ z$$

$$z \bullet (x \circ y) = z \bullet (x' \circ y')$$

$$(x \bullet y) \circ z = (x' \bullet y') \circ z$$

$$z \bullet (x \bullet y) = z \bullet (x' \bullet y')$$

$$(x \setminus y) \circ z = (x' \setminus y') \circ z$$

$$z \bullet (x \backslash y) = z \bullet (x' \backslash y')$$

$$(x/y) \circ z = (x'/y') \circ z$$

$$z \bullet (x/y) = z \bullet (x'/y')$$

Identities of retracts

Proposition (T. Gateva-Ivanova)

Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack and let $k \in \mathbb{N}$. Then $|\text{Ret}^k(X)| = 1$ if and only if

$$(\cdots(x_1\circ x_2)\circ\cdots)\circ x_k)\circ y=(\cdots(x_1'\circ x_2)\circ\cdots)\circ x_k)\circ y,$$

for all x_1, \ldots, x_k, y and $x_1' \in X$.

Open Problem

Find an equational basis for biracks satisfying $|\text{Ret}^k(X)| = 1$

For distributive biracks, see the talk of Annal

Identities of retracts

Proposition (T. Gateva-Ivanova)

Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack and let $k \in \mathbb{N}$. Then $|\text{Ret}^k(X)| = 1$ if and only if

$$(\cdots(x_1\circ x_2)\circ\cdots)\circ x_k)\circ y=(\cdots(x_1'\circ x_2)\circ\cdots)\circ x_k)\circ y,$$

for all x_1, \ldots, x_k, y and $x_1' \in X$.

Open Problem

Find an equational basis for biracks satisfying $|\text{Ret}^k(X)| = 1$.

For distributive biracks, see the talk of Annal

Identities of retracts

Proposition (T. Gateva-Ivanova)

Let $(X, \circ, \bullet, \setminus, /)$ be an involutive birack and let $k \in \mathbb{N}$. Then $|\text{Ret}^k(X)| = 1$ if and only if

$$(\cdots(x_1\circ x_2)\circ\cdots)\circ x_k)\circ y=(\cdots(x_1'\circ x_2)\circ\cdots)\circ x_k)\circ y,$$

for all x_1, \ldots, x_k, y and $x_1' \in X$.

Open Problem

Find an equational basis for biracks satisfying $|\text{Ret}^k(X)| = 1$.

For distributive biracks, see the talk of Anna!