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Malcev Varieties and Centrality

Malcev Operation

Term P(x , y , z) such that P(x , x , z) = z and P(x , y , y) = x .

In quasigroups: P(x , y , z) = (x/(y\y)) · (y\z).

Lemma

Let Q be a quasigroup and V a subquasigroup of Q × Q containing the
diagonal Q̂ = {(x , x) : x ∈ Q}. Then V is a congruence on Q.

Proof.

Symmetry:

(x , x), (x , y), (y , y) ∈ V ⇒ (y , x) = (P(x , x , y),P(x , y , y)) ∈ V .

Etc.
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Malcev Varieties and Centrality

Central congruences

A congruence V on Q is central if Q̂ is a normal subalgebra of V .

Theorem

A quasigroup Q has a unique maximal central congruence, the center
congruence ζ(Q).

If Q is a loop, the class [1]ζ(Q) = Z (Q) is the usual center.

Central nilpotence for quasigroups is now defined iteratively by factoring
out the center congruence in every step.
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Malcev Varieties and Centrality

Z-quasigroups
A quasigroup Q is a Z-quasigroup if ζ(Q) = Q × Q and Q̂ is normal in
Q × Q. (Nilpotent of class ≤ 1.)

Note: Z-loops are precisely abelian groups.

Theorem

Let Q be a quasigroup of prime order p. Then:

• Q is Z-quasigroup, or

• Mlt(Q) ∈ {AQ ,SQ}, or

• p = 11 and Mlt(Q) ∈ {PSL2(11),M11}, or

• p = 23 and Mlt(Q) = M23, or

• p = (qk − 1)/(q − 1) for a prime power q and
PSLk(q) ≤ Mlt(Q) ≤ PΓLk(q).
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Malcev Varieties and Centrality

Central isotopy

The definition is a bit technical, but it is an equivalence relation finer than
isotopy and coarser then isomorphy.

If P, Q are centrally isotopic, then Mlt(P), Mlt(Q) are isomorphic.

Central isotopes of abelian groups are abelian groups.

Central isotopes of Z-quasigroups are Z-quasigroups.
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Quasigroup representations

Quasigroup representations

Smith developed three kinds of representation theory for quasigroups:

• permutation representation,

• character theory,

• module theory.

All come with a twist to account for the lack of associativity.
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Quasigroup representations

Approximate symmetry

... an exact symmetry holding at some level of a hierarchical system.

Q 1 2 3 4 5 6
1 1 3 2 5 6 4
2 3 2 1 6 4 5
3 2 1 3 4 5 6
4 4 5 6 1 2 3
5 5 6 4 2 3 1
6 6 4 5 3 1 2

Let P = {1} ≤ Q and P\Q = {{1}, {2, 3}, {4, 5, 6}} = {a1, a2, a3} the orbits of
LMltP(Q) = 〈(2, 3)(4, 5, 6)〉 = 〈L1〉.
For x ∈ Q, let R(x) = RP\Q(x) be the square matrix indexed by P\Q such that
R(x)(ai , aj) is the probability that x moves a randomly chosen element of ai to aj .
The monoid generated by all R(x) acts on the space
{(x1a1, x2a2, x3a3) : x1 + x2 + x3 = 1}.
Combining a1, a2 into a1 ∪ a2 yields an exact symmetry.
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Quasigroup representations

Permutation representation

... essentially an abstract version of the iterated function system exhibited
on the previous slide. This can be expressed in terms of coalgebras.
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Quasigroup representations

Character tables

G = Mlt(Q) acts diagonally on Q × Q by Lx(a, b) = (xa, xb), etc.

Conjugacy classes of Q are the orbits of thee diagonal action of G , say s
of them.

Class functions are those mappings θ : Q × Q → Q × Q with θ = θg for
every g ∈ G , where θg (x , y) = θ(g−1x , g−1y). These are complex linear
combinations of characteristic functions on conjugacy classes.

The character table is an s-tuple of suitably chosen class functions. There
are orthogonality relations, etc.
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Petr Vojtěchovský (University of Denver) JDH Smith Loops ’19 19 / 28



Quasigroup representations

Modules

Fix an object Q in a category C. The slice category C/Q has as objects
the morphisms p : E → Q from C, and morphisms

f : (p1 : E1 → Q)→ (p2 : E2 → Q)

iff there is a morphism f : E1 → E2 in C such that p2f = p1.

Theorem

Let C be the variety of groups and G a group. Then there is a one-to-one
correspondence between right G-modules and “abelian groups” in the slice
category C/G.

Quasigroup Q-modules are then defined to be the abelian groups in the
slice category C/Q, where C is the category of quasigroups.

Petr Vojtěchovský (University of Denver) JDH Smith Loops ’19 20 / 28
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Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p ∈ (0, 1). Define p(x , y) = (1− p)x + py .

Then:

p(x , x) = x ,

p(x , y) = 1− p(y , x),

q(z , p(y , x)) = q ◦ p(q/(p ◦ q)(z , y), x),

where p ◦ q = 1− (1− p)(1− q).

Meet semilattices with p(x , y) = xy = x ∧ y satisfy the same axioms.

Abstractly, we obtain barycentric algebras.
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Petr Vojtěchovský (University of Denver) JDH Smith Loops ’19 21 / 28



Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p ∈ (0, 1). Define p(x , y) = (1− p)x + py .
Then:

p(x , x) = x ,

p(x , y) = 1− p(y , x),

q(z , p(y , x)) = q ◦ p(q/(p ◦ q)(z , y), x),

where p ◦ q = 1− (1− p)(1− q).

Meet semilattices with p(x , y) = xy = x ∧ y satisfy the same axioms.

Abstractly, we obtain barycentric algebras.
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Modes and Barycentric Algebras

Modes

Modes are idempotent and entropic algebras, that is, their operations
satisfy

ω(x , x , · · · , x) = x ,

and

ω(ω′(x11, . . . , x1n), . . . , ω′(xm1, . . . , xmn))

= ω′(ω(x11, . . . , xm1), . . . , ω(x1n, . . . , xmn)).

Equivalently, all polynomials are homomorphisms.

Barycentric algebras are instances of modes.

Applications include hierarchical statistical mechanics and modeling of
complex systems.
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Comtrans Algebras

The context for comtrans algebras

“Lie algebras vs. formal groups” generalizes to

“Malcev algebras vs. formal Moufang loops,” which generalizes to
“Akivis algebras vs. formal (binary) loops.”

For n ≥ 3, a formal n-ary loop is described by
(n

2

)
Akivis algebras and

(n
3

)
comtrans algebras in the tangent space.
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Comtrans Algebras

Comtrans algebras

...algebraic structure on the tangent bundle of the coordinate ternary loop
of a 4-web.

A comtrans algebra is a vector space A with two trilinear operations
A× A× A→ A, the commutator [x , y , z ] and the translator 〈x , y , z〉,
satisfying the following polynomial identities for all x , y , z ∈ A:

• [x , y , z ] + [y , x , z ] = 0,

• 〈x , y , z〉+ 〈y , z , x〉+ 〈z , x , y〉 = 0 (Jacobi identity),

• [x , y , z ] + [z , y , x ] = 〈x , y , z〉+ 〈z , y , x〉 (comtrans identity).
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Sedenions

Toward hypercomplex algebras
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Sedenions

Well, academic Papa, can you multiply sedecimtuplets?

Yes, he can!
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Sedenions

Theorem (S 1995)

Let K be the usual Cayley numbers (real octonions) and let f be a new
unit. Define addition on S = K+Kf componentwise, and multiplication by

(x+yf )(u+vf ) =

{
xu + vxf , if y = 0,
(xy · uy−1 − yv) + (yu − vy−1 · xy)f , else.

Then:

• K embeds into S as a subalgebra,

• the left distributive law holds in S,

• the norm |x + yf | = (xx + yy)1/2 is multiplicative,

• the 15-sphere S = {z ∈ S : |z | = 1} is a left loop, and it is a loop
almost everywhere.
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