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Malcev Varieties and Centrality

Malcev Operation

Term P(x,y, z) such that P(x, x,z) = z and P(x,y,y) = x.
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Term P(x,y, z) such that P(x, x,z) = z and P(x,y,y) = x.
In quasigroups: P(x,y,z) = (x/(y\y)) - (v\2).
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Malcev Varieties and Centrality

Malcev Operation

Term P(x,y, z) such that P(x, x,z) = z and P(x,y,y) = x.
In quasigroups: P(x,y,z) = (x/(y\y)) - (v\2).

Lemma

Let Q be a quasigroup and V' a subquasigroup of @ x Q containing the
diagonal Q = {(x,x) : x € Q}. Then V is a congruence on Q.

Proof.
Symmetry:

(x,x), (x,¥), (y,y) € V= (y,x) = (P(x,x,¥), P(x,y,y)) € V.

Etc. O
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Malcev Varieties and Centrality

Central congruences

A congruence V on Q is central if Q is a normal subalgebra of V.
Theorem

A quasigroup @ has a unique maximal central congruence, the center
congruence ((Q).
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Central congruences

A congruence V on Q is central if Q is a normal subalgebra of V.
Theorem

A quasigroup @ has a unique maximal central congruence, the center
congruence ((Q).

If Q is a loop, the class [1]¢(q) = Z(Q) is the usual center.
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Malcev Varieties and Centrality

Central congruences

A congruence V on Q is central if Q is a normal subalgebra of V.
Theorem

A quasigroup @ has a unique maximal central congruence, the center
congruence ((Q).

If Q is a loop, the class [1]¢(q) = Z(Q) is the usual center.

Central nilpotence for quasigroups is now defined iteratively by factoring
out the center congruence in every step.
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Malcev Varieties and Centrality
Z-quasigroups

A quasigroup Q is a Z-quasigroup if ((Q) = Q x Q and Q is normal in
Q@ x Q. (Nilpotent of class < 1.)
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Malcev Varieties and Centrality
Z-quasigroups

A quasigroup Q is a Z-quasigroup if ((Q) = Q x Q and Q is normal in
Q@ x Q. (Nilpotent of class < 1.)

Note: Z-loops are precisely abelian groups.

Theorem

Let Q be a quasigroup of prime order p. Then:
o Q is Z-quasigroup, or

Mlt(Q) S {AQ, SQ}, or

p =11 and Mlt(Q) € {PSLy(11), M11}, or

p =23 and Mlt(Q) = Mas, or

p=(g“ —1)/(q — 1) for a prime power q and
PSLi(q) < MIt(Q) < PTLy(q).
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Malcev Varieties and Centrality

Central isotopy

The definition is a bit technical, but it is an equivalence relation finer than
isotopy and coarser then isomorphy.
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Malcev Varieties and Centrality

Central isotopy

The definition is a bit technical, but it is an equivalence relation finer than
isotopy and coarser then isomorphy.

If P, Q are centrally isotopic, then Mlt(P), Mlt(Q) are isomorphic.
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Malcev Varieties and Centrality

Central isotopy

The definition is a bit technical, but it is an equivalence relation finer than
isotopy and coarser then isomorphy.

If P, Q are centrally isotopic, then Mlt(P), Mlt(Q) are isomorphic.
Central isotopes of abelian groups are abelian groups.

Central isotopes of Z-quasigroups are Z-quasigroups.
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Quasigroup representations

Quasigroup representations

Smith developed three kinds of representation theory for quasigroups:

e permutation representation,
e character theory,

e module theory.

All come with a twist to account for the lack of associativity.
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Quasigroup representations

Approximate symmetry

. an exact symmetry holding at some level of a hierarchical system.

Petr Vojt&chovsky (University of Denver)

Rl 2 3 4 5 6
111 3 2 5 6 4
213 21 6 4 5
312 1 3 4 5 6
414 5 6 1 2 3
515 6 4 2 3 1
6|6 4 5 3 1 2
JDH Smith
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Quasigroup representations

Approximate symmetry

. an exact symmetry holding at some level of a hierarchical system.

RI1 2 3 4 5 6
111 3 2 5 6 4
213 21 6 4 5
312 1 3 4 5 6
414 5 6 1 2 3
515 6 4 2 3 1
6|6 4 5 3 1 2

Let P={1} < Q and P\Q = {{1},{2,3},{4,5,6}} = {a1, a2, a3} the orbits of
LMltp(Q) = ((2,3)(4,5,6)) = (Ly).
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Quasigroup representations

Approximate symmetry

. an exact symmetry holding at some level of a hierarchical system.

RI1 2 3 4 5 6
111 3 2 5 6 4
213 21 6 4 5
312 1 3 4 5 6
414 5 6 1 2 3
515 6 4 2 3 1
6|16 45 3 1 2

Let P={1} < Q and P\Q = {{1},{2,3},{4,5,6}} = {a1, a2, a3} the orbits of
LMltp(Q) = ((2,3)(4,5,6)) = (L1).

For x € Q, let R(x) = Rp\q(x) be the square matrix indexed by P\Q such that
R(x)(ai, aj) is the probability that x moves a randomly chosen element of a; to a;.
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Quasigroup representations

Approximate symmetry

. an exact symmetry holding at some level of a hierarchical system.

RI1 2 3 4 5 6
111 3 2 5 6 4
213 21 6 4 5
312 1 3 4 5 6
414 5 6 1 2 3
515 6 4 2 3 1
6|16 45 3 1 2

Let P={1} < Q and P\Q = {{1},{2,3},{4,5,6}} = {a1, a2, a3} the orbits of
LMltp(Q) = ((2,3)(4,5,6)) = (L1).

For x € Q, let R(x) = Rp\q(x) be the square matrix indexed by P\Q such that
R(x)(ai, aj) is the probability that x moves a randomly chosen element of a; to a;.
The monoid generated by all R(x) acts on the space

{(X1817X282,X3a3) X1+ X0+ X3 = 1}
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Quasigroup representations

Approximate symmetry

. an exact symmetry holding at some level of a hierarchical system.

RI1 2 3 4 5 6
111 3 2 5 6 4
213 21 6 4 5
312 1 3 4 5 6
414 5 6 1 2 3
515 6 4 2 3 1
6|16 45 3 1 2

Let P={1} < Q and P\Q = {{1},{2,3},{4,5,6}} = {a1, a2, a3} the orbits of
LMltp(Q) = ((2,3)(4,5,6)) = (L1).

For x € Q, let R(x) = Rp\q(x) be the square matrix indexed by P\Q such that
R(x)(ai, aj) is the probability that x moves a randomly chosen element of a; to a;.
The monoid generated by all R(x) acts on the space

{(X1817X282,X3a3) X1+ X0+ X3 = 1}

Combining a1, a» into a; U a, yields an exact symmetry.
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Quasigroup representations

Permutation representation

. essentially an abstract version of the iterated function system exhibited
on the previous slide. This can be expressed in terms of coalgebras.
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Quasigroup representations

Character tables

G = MIt(Q) acts diagonally on Q x Q by Ly(a, b) = (xa, xb), etc.
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Quasigroup representations

Character tables

G = MIt(Q) acts diagonally on Q x Q by Ly(a, b) = (xa, xb), etc.

Conjugacy classes of @ are the orbits of thee diagonal action of G, say s
of them.
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Quasigroup representations

Character tables

G = MIt(Q) acts diagonally on Q x Q by Ly(a, b) = (xa, xb), etc.

Conjugacy classes of @ are the orbits of thee diagonal action of G, say s
of them.

Class functions are those mappings 6 : @ x @ — @ x Q with 8 = 08 for
every g € G, where 08(x,y) = 0(g~1x,g71y). These are complex linear
combinations of characteristic functions on conjugacy classes.
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Quasigroup representations

Character tables

G = MIt(Q) acts diagonally on Q x Q by Ly(a, b) = (xa, xb), etc.

Conjugacy classes of @ are the orbits of thee diagonal action of G, say s
of them.

Class functions are those mappings 6 : @ x @ — @ x Q with 8 = 08 for
every g € G, where 08(x,y) = 0(g~1x,g71y). These are complex linear
combinations of characteristic functions on conjugacy classes.

The character table is an s-tuple of suitably chosen class functions. There
are orthogonality relations, etc.
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Quasigroup representations

Modules

Fix an object @ in a category C. The slice category C/Q has as objects
the morphisms p: E — @ from C, and morphisms

fo(pr:E1— Q)= (p2: B2 — Q)

iff there is a morphism f : E; — E; in C such that pof = p;.

Petr Vojt&chovsky (University of Denver) JDH Smith
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Quasigroup representations

Modules

Fix an object @ in a category C. The slice category C/Q has as objects
the morphisms p: E — @ from C, and morphisms

fo(pr:E1— Q)= (p2: B2 — Q)

iff there is a morphism f : E; — E; in C such that pof = p;.
Theorem

Let C be the variety of groups and G a group. Then there is a one-to-one
correspondence between right G-modules and “abelian groups” in the slice
category C/G.
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Quasigroup representations

Modules

Fix an object @ in a category C. The slice category C/Q has as objects
the morphisms p: E — @ from C, and morphisms

fo(pr:E1— Q)= (p2: B2 — Q)

iff there is a morphism f : E; — E; in C such that pof = p;.

Theorem

Let C be the variety of groups and G a group. Then there is a one-to-one
correspondence between right G-modules and “abelian groups” in the slice
category C/G.

Quasigroup Q-modules are then defined to be the abelian groups in the
slice category C/Q, where C is the category of quasigroups.
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Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p € (0,1). Define p(x,y) = (1 — p)x + py.
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Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p € (0,1). Define p(x,y) = (1 — p)x + py.
Then:

q0p(a/(po q)(z. ). %),
where pog=1—(1—-p)(1—q).
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Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p € (0,1). Define p(x,y) = (1 — p)x + py.

Then:

a(z.p(y. x)) = g0 p(a/(po )(z,y), X),

where pog=1—(1—-p)(1—q).

Meet semilattices with p(x,y) = xy = x A y satisfy the same axioms.
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Modes and Barycentric Algebras

Barycentric algebras

Let C be a convex set and p € (0,1). Define p(x,y) = (1 — p)x + py.

Then:

p(x, x)
p(x,y)
q(z, p(y,x))

where pog=1—(1—-p)(1—q).

X,
1-—
qop

Meet semilattices with p(x,y) = xy = x A y satisfy the same axioms.

( ’ )’
p(q/(poq)(z,y),x),

Abstractly, we obtain barycentric algebras.

Petr Vojt&chovsky (University of Denver)

JDH Smith
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Modes and Barycentric Algebras

Modes

Modes are idempotent and entropic algebras, that is, their operations
satisfy

and

wW(W (X115, X1n)y -+ oW (Xm1, -+ -+ s Xmn))
= W (W(X11s -y Xm1)s - W(Xtns « -+ s Xmin))-

Equivalently, all polynomials are homomorphisms.
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Modes and Barycentric Algebras

Modes

Modes are idempotent and entropic algebras, that is, their operations
satisfy

w(x,x, - ,x) = x,
and
wW(W (X115, X1n)y -+ oW (Xm1, -+ -+ s Xmn))
= W (W(X11s -y Xm1)s - W(Xtns « -+ s Xmin))-

Equivalently, all polynomials are homomorphisms.

Barycentric algebras are instances of modes.
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Modes and Barycentric Algebras
Modes

Modes are idempotent and entropic algebras, that is, their operations
satisfy

w(x,x, - ,x) = x,
and
wW(W (X115, X1n)y -+ oW (Xm1, -+ -+ s Xmn))
= W (W(X11s -y Xm1)s - W(Xtns « -+ s Xmin))-

Equivalently, all polynomials are homomorphisms.
Barycentric algebras are instances of modes.

Applications include hierarchical statistical mechanics and modeling of
complex systems.
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Comtrans Algebras

The context for comtrans algebras

“Lie algebras vs. formal groups” generalizes to
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The context for comtrans algebras

“Lie algebras vs. formal groups” generalizes to
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Comtrans Algebras

The context for comtrans algebras

“Lie algebras vs. formal groups” generalizes to
“Malcev algebras vs. formal Moufang loops,” which generalizes to
“Akivis algebras vs. formal (binary) loops.”
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Comtrans Algebras

The context for comtrans algebras

“Lie algebras vs. formal groups” generalizes to
“Malcev algebras vs. formal Moufang loops,” which generalizes to

“Akivis algebras vs. formal (binary) loops.”

For n > 3, a formal n-ary loop is described by (5) Akivis algebras and (3)
comtrans algebras in the tangent space.
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Comtrans Algebras

Comtrans algebras

...algebraic structure on the tangent bundle of the coordinate ternary loop
of a 4-web.
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Comtrans Algebras

Comtrans algebras

...algebraic structure on the tangent bundle of the coordinate ternary loop
of a 4-web.

A comtrans algebra is a vector space A with two trilinear operations
Ax Ax A— A, the commutator [x, y, z] and the translator (x,y, z),
satisfying the following polynomial identities for all x,y,z € A:

hd [X,y,z]+[y,x,z] =0,
o (x,y,z) + (y,z,x) + (z,x,y) = 0 (Jacobi identity),
o [x,y,z]+ [z,y,x] = (x,y,z) + (z,y,x) (comtrans identity).
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Sedenions

Toward hypercomplex algebras

The standard story of algebraic triplets is that William Rowan
Hamilton wanted to generalise the geometric view given by the
complex plane (the Argand diagram) to three dimensions so that
applications in 3-dimensions could benefit from the system of triplets
in an analogous way to how the complex numbers give a powerful
way of making applications in 2-dimensions. For example in 1842
Hamilton was so preoccupied with the triplets that even his children
were aware of it. Every morning they would inquire:-

Well, Papa can you multiply triplets?

but he had to admit that he could still only add and subtract them.
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Sedenions

Well, academic Papa, can you multiply sedecimtuplets?
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Sedenions

Well, academic Papa, can you multiply sedecimtuplets?

Yes, he can!
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Sedenions

Well, academic Papa, can you multiply sedecimtuplets?
Yes, he can!

The sequence of normed real division algebras—real numbers R, com-
plex numbers C, quaternions H, and Cayley numbers [K—exhibits a
successive degradation of properties. The complex numbers are no longer
ordered, the quaternions no longer commutative, and the Cayley numbers
no longer associative. There is a parallel degradation of the propertics of
the induced multiplications on the corresponding unit spheres. Thus S is
a cyclic group, S' is a non-cyclic abelian group, $* is a non-abelian group,
and S7 is a Moufang loop. This degradation, along with results such as
Hurwitz’ [Hu] on composition algebras and Adams’ [Ad] on odd maps, has
led to a consensus that the nested sequence of “hypercomplex numbers”
R c C € H c K necessarily terminates at the Cayley numbers [Eb, Sect.
10.3.4]. The only work outside the consensus appears to have been that of
Pfister [Pf] on the composition of quadratic forms, although this work was
done in more of a number-theoretic context without regard for the
algebraic properties of the composition.

The purpose of the current paper is to present an algebraic structure
(4.2) on a 16-dimensional Euclidean space S = K @ IKf (of “sedenions™;
cf. “quaternions,” “octonions”), such that the Euclidean norm is multi-
plicative (Theorem 4.1) and the Cayley numbers appear as a subalgebra.
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Sedenions

Sedenions

Theorem (S 1995)

Let K be the usual Cayley numbers (real octonions) and let f be a new
unit. Define addition on S = K+ Kf componentwise, and multiplication by

| xu+ wxf, ify =0,
(x+yf)(utvf) = { (xy - uy~t — yv) + (yu — vy L. xy)f, else.

Then:
o K embeds into S as a subalgebra,
o the left distributive law holds in S,
e the norm |x + yf| = (xx + y¥)'/? is multiplicative,

o the 15-sphere S = {z € S : |z| = 1} is a left loop, and it is a loop
almost everywhere.
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