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@ Let us recall that a quasigroup is is an algebraic structure < G,- >
with a binary operation (written usually as juxtaposition, a- b = ab)
such that rg : x — xg (the right translation) and /g : x — gx (the left
translation) are permutations of G, equivalently, in which the
equations ya = b and ax = b are soluble uniquely for x and y

respectively.
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@ Let us recall that a quasigroup is is an algebraic structure < G,- >
with a binary operation (written usually as juxtaposition, a- b = ab)
such that rg : x — xg (the right translation) and /g : x — gx (the left
translation) are permutations of G, equivalently, in which the
equations ya = b and ax = b are soluble uniquely for x and y
respectively. If we assume only that left (resp., right) translations are
permutations, we speak about a left quasigroup (resp., right
quasigroup.
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@ Let us recall that a quasigroup is is an algebraic structure < G,- >
with a binary operation (written usually as juxtaposition, a- b = ab)
such that rg : x — xg (the right translation) and /g : x — gx (the left
translation) are permutations of G, equivalently, in which the
equations ya = b and ax = b are soluble uniquely for x and y
respectively. If we assume only that left (resp., right) translations are
permutations, we speak about a left quasigroup (resp., right
quasigroup.

@ A left loop is defined to be a left quasigroup with a right identity e,
i.e. xe = x, while a right loop is a right quasigroup with a left
identity, ex = x.
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@ Let us recall that a quasigroup is is an algebraic structure < G,- >
with a binary operation (written usually as juxtaposition, a- b = ab)
such that rg : x — xg (the right translation) and /g : x — gx (the left
translation) are permutations of G, equivalently, in which the
equations ya = b and ax = b are soluble uniquely for x and y
respectively. If we assume only that left (resp., right) translations are
permutations, we speak about a left quasigroup (resp., right
quasigroup.

@ A left loop is defined to be a left quasigroup with a right identity e,
i.e. xe = x, while a right loop is a right quasigroup with a left
identity, ex = x. A loop is a quasigroup with a two-sided identity
element, e, ex = xe = x.
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@ Let us recall that a quasigroup is is an algebraic structure < G,- >
with a binary operation (written usually as juxtaposition, a- b = ab)
such that rg : x — xg (the right translation) and /g : x — gx (the left
translation) are permutations of G, equivalently, in which the
equations ya = b and ax = b are soluble uniquely for x and y
respectively. If we assume only that left (resp., right) translations are
permutations, we speak about a left quasigroup (resp., right
quasigroup.

@ A left loop is defined to be a left quasigroup with a right identity e,
i.e. xe = x, while a right loop is a right quasigroup with a left
identity, ex = x. A loop is a quasigroup with a two-sided identity
element, e, ex = xe = x. A loop < G, -, e > with identity e is called
an inverse loop if to each element a in G there corresponds an
element a=! in G such that

al(ab) = (ba)at=0b
forall b e G.
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Transversals

Example

Let G be a group with the unit e, H be a subgroup, and S C G be a left

transversal to H in G, i.e. S contains exactly one point from each coset gH
in G/H. This means that any element g € G has a unique decomposition
g = sh, where s € S and h € H and produces an identification G = S x H

of sets.
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Transversals

Example

Let G be a group with the unit e, H be a subgroup, and S C G be a left
transversal to H in G, i.e. S contains exactly one point from each coset gH
in G/H. This means that any element g € G has a unique decomposition
g = sh, where s € S and h € H and produces an identification G = S x H
of sets. Let ps: G — S be the projection on S determined by this
identification. If we assume that e € S, then S with the multiplication

sos’ = ps(ss’)

and e as a right unit is a left loop.
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Transversals

Example

Let G be a group with the unit e, H be a subgroup, and S C G be a left
transversal to H in G, i.e. S contains exactly one point from each coset gH
in G/H. This means that any element g € G has a unique decomposition
g = sh, where s € S and h € H and produces an identification G = S x H
of sets. Let ps: G — S be the projection on S determined by this
identification. If we assume that e € S, then S with the multiplication

sos’ = ps(ss’)

and e as a right unit is a left loop.

We would like to propose a concepts of loopoid, defined as a
nonassociative generalization of a groupoid.
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Transversals

Example

Let G be a group with the unit e, H be a subgroup, and S C G be a left
transversal to H in G, i.e. S contains exactly one point from each coset gH
in G/H. This means that any element g € G has a unique decomposition
g = sh, where s € S and h € H and produces an identification G = S x H
of sets. Let ps: G — S be the projection on S determined by this
identification. If we assume that e € S, then S with the multiplication

sos’ = ps(ss’)

and e as a right unit is a left loop.

We would like to propose a concepts of loopoid, defined as a
nonassociative generalization of a groupoid. Note that here and
throughout the presentation, by groupoid we understand a Brandt
groupoid, i.e. a small category in which every morphism is an
isomorphism, and not an object called in algebra also a magma.
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@ These are loops which can be considered as nonassociative
generalizations of groups. In the case of genuine groupoids, however,
the situation is more complicated, because the multiplication is only
partially defined, so the axioms of a loop must be reformulated.
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@ These are loops which can be considered as nonassociative
generalizations of groups. In the case of genuine groupoids, however,
the situation is more complicated, because the multiplication is only
partially defined, so the axioms of a loop must be reformulated.

@ A convenient way is to think about groupoids as being defined exactly
like groups but with the difference that all objects/maps in the
definition are relations, like it has been done by Zakrzewski. In
particular, the unity is a relation ¢ : {e}—> G, associating to a point
e a subset M = ¢(e) C G, the set of units. Using this idea, we define
semiloopoids, as well as more specific objects which we will call
loopoids.
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@ These are loops which can be considered as nonassociative
generalizations of groups. In the case of genuine groupoids, however,
the situation is more complicated, because the multiplication is only
partially defined, so the axioms of a loop must be reformulated.

@ A convenient way is to think about groupoids as being defined exactly
like groups but with the difference that all objects/maps in the
definition are relations, like it has been done by Zakrzewski. In
particular, the unity is a relation ¢ : {e}—> G, associating to a point
e a subset M = ¢(e) C G, the set of units. Using this idea, we define
semiloopoids, as well as more specific objects which we will call
loopoids.

@ Infinitesimal parts of Lie groupoids are Lie algebroids and the
corresponding ‘Lie theory’ is well established.
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@ These are loops which can be considered as nonassociative
generalizations of groups. In the case of genuine groupoids, however,
the situation is more complicated, because the multiplication is only
partially defined, so the axioms of a loop must be reformulated.

@ A convenient way is to think about groupoids as being defined exactly
like groups but with the difference that all objects/maps in the
definition are relations, like it has been done by Zakrzewski. In
particular, the unity is a relation ¢ : {e}—> G, associating to a point
e a subset M = ¢(e) C G, the set of units. Using this idea, we define
semiloopoids, as well as more specific objects which we will call
loopoids.

@ Infinitesimal parts of Lie groupoids are Lie algebroids and the
corresponding ‘Lie theory’ is well established. This can be partially
extended to a differential version of the concept of (semi)loopoid, a
differential (semi)loopoid. As the infinitesimal version of associativity
is the Jacobi identity, the corresponding ‘brackets’ will not satisfy the
latter.
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Semiloopoids
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Semiloopoids

@ Note that the term loopoid has appeared already in a paper by
Kinyon in a similar context. The motivating example, however, built
as an object ‘integrating’ the Courant bracket on TM @& T*M, uses
the group of diffeomorphisms of the manifold M as ‘integrating’ the
Lie algebra of vector fields on M, not the pair groupoid M x M as

‘integrating’ the Lie algebroid TM.

Budapest, 7-13/07/2019 5 / 13
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Semiloopoids

@ Note that the term loopoid has appeared already in a paper by
Kinyon in a similar context. The motivating example, however, built
as an object ‘integrating’ the Courant bracket on TM @& T*M, uses
the group of diffeomorphisms of the manifold M as ‘integrating’ the
Lie algebra of vector fields on M, not the pair groupoid M x M as
‘integrating’ the Lie algebroid TM.

A semiloopoid over a set M is a structure consisting of a set G together
with projections o, 3 : G — M onto a subset M C G (set of units) and a
multiplication relation G3 C G x G x G such that, for each g € G,
(a(g).8,8) € Gs and (g,0(g),8) € C3, (1)
and the relations Iz, r; C G X G defined by
(hl, h2) (S Ig = (g, hl, h2) (S G3, (2)
(hl, h2) € rg < (hl,g, h2) € G3 . (3)
are Injective. )
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Semiloopoids
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Semiloopoids

We can view /; and r, as bijections defined on their domains, Dé’, and Dy

onto their ranges, Ré’{ and Rg, respectively.
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Semiloopoids

We can view /; and r, as bijections defined on their domains, Dé”r and D,
onto their ranges, Ré, and R, respectively.

Definition

(alternative) A semiloopoid over a set M is a structure consisting of a set
G including M and equipped with
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Semiloopoids

We can view /; and r, as bijections defined on their domains, Dé”r and D,
onto their ranges, Ré, and Rg, respectively.

(alternative) A semiloopoid over a set M is a structure consisting of a set
G including M and equipped with

@ a partial multiplication m: G x G D G, — G, m(g, h) = gh, such
that, for all g < G, Ig . Dé' N Rs{" /gh _ gh, (4)
is a bijection from Dé ={he G|(g,h) € Go} onto
Rl = {ghl|(g, h) € G2}, and
rg : Dg — Rg, rgh = hg, (5)
is a bijection from D; = {h € G|(h, g) € G2} onto
Rg ={hg|(h,g) € G2};
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Semiloopoids

We can view /; and r, as bijections defined on their domains, Dé”r and D,

onto their ranges, Ré, and Rg, respectively.

Definition

(alternative) A semiloopoid over a set M is a structure consisting of a set

G including M and equipped with
@ a partial multiplication m: G x G D G, — G, m(g, h) = gh, such
that, for all g < G, Ig . Dé' N Rs{" /gh:gh,
is a bijection from Dé ={he G|(g,h) € Go} onto
Ry = {gh|(g, h) € Gz}, and
rg : Dg — Rg, rgh=hg,
is a bijection from D; = {h € G|(h, g) € G2} onto
Rg ={hg|(h,g) € G2};
@ a pair of projections o, 5 : G — M such that, for all g € G,
algle =g, gBlg)=¢g.
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Inverse semiloopoids
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Inverse semiloopoids

Definition
A semiloopoid will be called a left inverse semiloopoid if there is a left

inversion map &, : G — G such that for each (g, h) € G, also

(ei(g),gh) € G2 and €/(g)(gh) = h. A right inverse semiloopoid can be
defined analogously.
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Inverse semiloopoids

Definition

A semiloopoid will be called a left inverse semiloopoid if there is a left
inversion map &, : G — G such that for each (g, h) € G, also

(ei(g),gh) € G2 and €/(g)(gh) = h. A right inverse semiloopoid can be
defined analogously.

A semiloopoid will be called an inverse semiloopoid if there is an inversion
map € : G — G, to be denoted simply by £(g) = g1, such that, for each
(g7 h)a (U,g) € G2r also (g_17gh)7(ug7g_1) € G2 and

g ' (gh)=h, (ug)g™'=u.
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Inverse semiloopoids

Definition

A semiloopoid will be called a left inverse semiloopoid if there is a left
inversion map &, : G — G such that for each (g, h) € G, also

(ei(g),gh) € G2 and €/(g)(gh) = h. A right inverse semiloopoid can be
defined analogously.

A semiloopoid will be called an inverse semiloopoid if there is an inversion
map € : G — G, to be denoted simply by £(g) = g1, such that, for each
(g, h),(u,g) € Gy, also (g1, gh), (ug,g 1) € Gy and

g ' (gh)=h, (ug)g™'=u.

In any inverse semiloopoid the following hold true: .
glg=pg)=alg™), ggl=0alg)=BkE") (g} =g
(gh)t=h"tg"t.
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Inverse semiloopoids

Definition

A semiloopoid will be called a left inverse semiloopoid if there is a left
inversion map &, : G — G such that for each (g, h) € G, also

(ei(g),gh) € G2 and €/(g)(gh) = h. A right inverse semiloopoid can be
defined analogously.

A semiloopoid will be called an inverse semiloopoid if there is an inversion
map € : G — G, to be denoted simply by £(g) = g1, such that, for each
(g, h),(u,g) € Gy, also (g1, gh), (ug,g 1) € Gy and

g ' (gh)=h, (ug)g™'=u.

In any inverse semiloopoid the following hold true:
gle=Bg)=alg™)). ggl=alg)=H) (67 =&

(gh)~! = h='g~!. The latter condition means that one side of the
equality makes sens if and only if the other makes sense (the elements are
composable) and they are equal.
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Unities associativity
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Unities associativity

The maps «, 5 in can be rather pathological. Let us assume now, that a
semiloopoid G over M, with a partial multiplication m and projections

«a, B : G — M, satisfies a very weak associativity condition, hereafter
called unities associativity:

(xy)z = x(yz) if one of x,y,z is a unit (i.e. belongsto M).  (7)
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Unities associativity

The maps «, 5 in can be rather pathological. Let us assume now, that a
semiloopoid G over M, with a partial multiplication m and projections
«a, B : G — M, satisfies a very weak associativity condition, hereafter
called unities associativity:

(xy)z = x(yz) if one of x,y,z is a unit (i.e. belongsto M).  (7)

The following proposition shows that the condition of unities associativity
for a semiloopoid over M is rather strong and implies that the anchor map
(o, 8) : G — M x M has nice properties, similar to these for groupoids.
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Unities associativity

The maps «, 5 in can be rather pathological. Let us assume now, that a
semiloopoid G over M, with a partial multiplication m and projections
«a, B : G — M, satisfies a very weak associativity condition, hereafter
called unities associativity:

(xy)z = x(yz) if one of x,y,z is a unit (i.e. belongsto M).  (7)

The following proposition shows that the condition of unities associativity
for a semiloopoid over M is rather strong and implies that the anchor map
(o, 8) : G — M x M has nice properties, similar to these for groupoids.

Proposition

A semiloopoid G over M satisfies the unities associativity condition if and
only if G2 = {(g,h) € G x G| B(g) = ah)} (8)
and (a,ﬂ)ZG%MXM (9)
is a semiloopoid morphism into the pair groupoid M x M, i.e.

a(gh) = a(g) and B(gh) = B(h). (10)
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Loopoids
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The unities associativity assumption implies that each element g of G
determines the left and right translation maps are injective:

lg - FA(B(g)) = F(alg)), rg: FP(alg)) » FP(Blg)).  (11)
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The unities associativity assumption implies that each element g of G
determines the left and right translation maps are injective:

lg - FA(B(g)) = F(alg)), rg: FP(alg)) » FP(Blg)).  (11)

Definition

A semiloopoid satisfying the unities associativity assumption and such that
the maps (11) are bijective will be called a loopoid.
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The unities associativity assumption implies that each element g of G
determines the left and right translation maps are injective:

lg - FA(B(g)) = F(alg)), rg: FP(alg)) » FP(Blg)).  (11)

Definition

A semiloopoid satisfying the unities associativity assumption and such that
the maps (11) are bijective will be called a loopoid.

In a loop, the multiplication is globally defined, so the unity associativity is
always satisfied by properties of the unity element. In this sense, loops are
loopoids over one point.
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The unities associativity assumption implies that each element g of G
determines the left and right translation maps are injective:

lg - FA(B(g)) = F(alg)), rg: FP(alg)) » FP(Blg)).  (11)

Definition

A semiloopoid satisfying the unities associativity assumption and such that
the maps (11) are bijective will be called a loopoid.

In a loop, the multiplication is globally defined, so the unity associativity is
always satisfied by properties of the unity element. In this sense, loops are
loopoids over one point.

Proposition

Let G be a loopoid over M with the source and target maps o, 3 : G — M.
Then, for each u € M, the multiplication in G induces on the set

G, ={g € Glalg) =B(g) = u}

a loop structure.
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ntial loopoids
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Differential loopoids

@ A loopoid G over a set M will be denoted simply by the symbol
G =M.
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Differential loopoids

@ A loopoid G over a set M will be denoted simply by the symbol
G =M.

e We will consider differential (smooth) loopoids. The inverse loopoid
G = M is said to be a differential if G and M are smooth manifolds
and all the structural maps are smooth with o and  being smooth
submersions.
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Differential loopoids

@ A loopoid G over a set M will be denoted simply by the symbol
G = M.

e We will consider differential (smooth) loopoids. The inverse loopoid
G = M is said to be a differential if G and M are smooth manifolds
and all the structural maps are smooth with o and  being smooth
submersions.

o If G = M is a differential inverse loopoid then m is a submersion,
t: M — G is an injective immersion and the inverse is a
diffeomorphism. Also left translations and right translations are
diffeomorphisms of the corresponding - and [-fibers.
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Differential loopoids

@ A loopoid G over a set M will be denoted simply by the symbol
G = M.

e We will consider differential (smooth) loopoids. The inverse loopoid
G = M is said to be a differential if G and M are smooth manifolds
and all the structural maps are smooth with o and  being smooth
submersions.

o If G = M is a differential inverse loopoid then m is a submersion,
t: M — G is an injective immersion and the inverse is a
diffeomorphism. Also left translations and right translations are
diffeomorphisms of the corresponding - and [-fibers.

@ Instead of differential inverse loopoid we can consider also weaker
concepts of a (differential) left inverse loopoid and right inverse
loopoid.
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Differential loopoids

@ A loopoid G over a set M will be denoted simply by the symbol
G = M.

e We will consider differential (smooth) loopoids. The inverse loopoid
G = M is said to be a differential if G and M are smooth manifolds
and all the structural maps are smooth with o and  being smooth
submersions.

o If G = M is a differential inverse loopoid then m is a submersion,
t: M — G is an injective immersion and the inverse is a
diffeomorphism. Also left translations and right translations are
diffeomorphisms of the corresponding - and [-fibers.

@ Instead of differential inverse loopoid we can consider also weaker
concepts of a (differential) left inverse loopoid and right inverse
loopoid. In these cases we have not the inverse map € : G — G, but
two inverse maps ¢/,i, : G — G, the left inverse ¢/(g) = g,_1 and the
right inverse £,(g) = g, %, and we assume

()=l () =1 (12)
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Tangent and cotangent loopoid
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Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.
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Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.

@ The tangent loopoid TG is obtained just by applying the tangent
functor: the source and target maps are Ta and T3, the partial
multiplication is Tm, Tm(X, X") = X e X/, etc.
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Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.

@ The tangent loopoid TG is obtained just by applying the tangent
functor: the source and target maps are Ta and T3, the partial
multiplication is Tm, Tm(X, X") = X e X/, etc.

@ In the cotangent loopoid T*G, the source mapping & : T"G — A*G is
defined as follows.

J.Grabowski (IMPAN) Tangent and cotangent loopoids Budapest, 7-13/07/2019 11 /13



Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.

@ The tangent loopoid TG is obtained just by applying the tangent
functor: the source and target maps are Ta and T3, the partial
multiplication is Tm, Tm(X, X") = X e X/, etc.

@ In the cotangent loopoid T*G, the source mapping & : T"G — A*G is
defined as follows. Let y1 be a cotangent vector to G at the element
g. We restrict u to Tg}'ﬁ and then pull back by r, to move it to
Toe)F’
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Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.

@ The tangent loopoid TG is obtained just by applying the tangent
functor: the source and target maps are Ta and T(, the partial
multiplication is Tm, Tm(X, X’) = X ¢ X/, etc.

@ In the cotangent loopoid T*G, the source mapping & : T"G — A*G is
defined as follows. Let y1 be a cotangent vector to G at the element
g. We restrict u to Tg]-'fB and then pull back by r, to move it to
Ta(g)}"ﬁ. Finally, we identify the tangent space Ta(g)]-"ﬁ with the
conormal space to M, since the (3-fibre is transverse to M.
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Tangent and cotangent loopoid

If G = M is a differential (left inverse, inverse) loopoid, then TG and
T*G carry canonical structures of (left inverse, inverse) differential
loopoids over TM and A*G = v*(G, M), respectively. Here,

AG = v(G, M) is the normal bundle to the submanifold M C G.

@ The tangent loopoid TG is obtained just by applying the tangent
functor: the source and target maps are Ta and T(, the partial
multiplication is Tm, Tm(X, X’) = X ¢ X/, etc.

@ In the cotangent loopoid T*G, the source mapping & : T"G — A*G is
defined as follows. Let y1 be a cotangent vector to G at the element
g. We restrict u to Tg]-'fB and then pull back by r, to move it to
Ta(g)}"ﬁ. Finally, we identify the tangent space Ta(g)]-"ﬁ with the
conormal space to M, since the (3-fibre is transverse to M.

@ By interchanging « and 3 and “right” and “left”, we construct in a
similar way the target map /3. Finally, 77/(X @ X’) = 7(X) + ~/(X").
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Example

@ Consider on G = R a differential loop structure with the
multiplication
xXoy=x+42y.
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@ Consider on G = R a differential loop structure with the
multiplication
xXoy=x+42y.
@ On TG =TR = {(x, x) : x,x € R} we have the tangent loop
structure
(x,x) e (y,y) = (x + 2y, x + 2y)
which is a differential loopoid structure over M = {(0,0)}.
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@ Consider on G = R a differential loop structure with the
multiplication
xXoy=x+42y.
@ On TG =TR = {(x, x) : x,x € R} we have the tangent loop
structure
(x,x) e (y,y) = (x + 2y, x + 2y)
which is a differential loopoid structure over M = {(0,0)}.
e On T*G =T*R = {(x, p) : x,p € R} we have a differential loopoid
structure over M = A*G =TgR=R* = {p : p € R}.
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@ Consider on G = R a differential loop structure with the
multiplication
xXoy=x+42y.
@ On TG =TR = {(x, x) : x,x € R} we have the tangent loop
structure
(x,x) e (y,y) = (x + 2y, x + 2y)
which is a differential loopoid structure over M = {(0,0)}.
e On T*G =T*R = {(x, p) : x,p € R} we have a differential loopoid
structure over M = A*G =TgR=R* = {p : p € R}.
@ The target and the source projections are

a(x,p) = %p, B(x,p)=p.
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Consider on G = R a differential loop structure with the
multiplication
xXoy=x+42y.

On TG = TR = {(x,x) : x,x € R} we have the tangent loop
structure

(x,x) e (y,y) = (x + 2y, x + 2y)
which is a differential loopoid structure over M = {(0,0)}.
On TG =T*R ={(x,p) : x,p € R} we have a differential loopoid
structure over M = A*G =TgR=R* = {p : p € R}.
The target and the source projections are

. 1
a(x, p) = 5P B(x,p) =p.
The partial product is defined by

(x 5P)(.p) = (x +2.p).
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THANK YOU FOR YOUR ATTENTION!
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