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Steiner triple systems and loops

Definition

A Steiner triple system STS is an incidence structure consisting of
points and blocks such that every two distinct points are contained
in precisely one block and any block has precisely three points.

A loop (L,-) is a quasigroup which has identity element e. This
means the left and right translations A, : y — a-y : L — L and
pa:yr—y-a:L— L, ac L are permutations of L. The
multiplication table for a finite loop is a Latin square.

The classical examples for Steiner triple system are the lines in an
affine geometry AG(d,3) over GF(3), for d = 2 this gives the
unique STS(9) and the lines of a projective geometry PG(d,2)
over GF(2) which yields for d = 2 the unique STS(7) which is also
called the Fano plane.
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Definition

Let S be a Steiner triple system, and let Q € S be fixed. For each
x € S, define its opposite —x as the third point u(x) in the triple
{x,Q, u(x)} through x and Q, define the addition x + Q = x,
X+ x=—x, and, forany y # x € S\ {Q},

X+y:—Z,

where z is the third point in the triple through x,y.

This definition gives a group precisely if the STS is an affine
geometry over GF(3).

The triples {x, y, z} of the STS corresponding to an affine Steiner
loop are characterized by the property that

x+y+z=Q.

Hence for any triple in the STS the associative property holds.
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A. Caggegi, G. Falcone, M. Pavone, On the additivity of block
designs J. Algebr. Comb. 45 (1), 271-294.

Since for every x € STS one has x + x + x = § an affine Steiner
loop has exponent 3.

An affine Steiner loop satisfies the weak inverse property.

O. Chein, Examples and methods of construction, 11.9.9 Example in
O. Chein, H. O. Pflugfelder, J. D. H. Smith, eds. Quasigroups and
Loops: Theory and Applications. Heldermann (1990), p. 86.

A STS is called a Hall triple system HTS if any three elements, not
in a triple, are contained in an affine plane AG(2,3). For Hall triple
systems the above definition yields commutative Moufang loop of
exponent 3. General an affine Steiner loop only fulfill

x+ ((x+y)+(x+y) =y+y,

M. H. Armanious, Commutative Loops of Exponent 3 with
x - (x - y)? = y?, Demonstratio Math. 35 (3), 469-475.
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Conversely, if Lgs is a commutative loop such that 3x = Q and
fulfilling the weak inverse property, then Lgs gives the structure of a
Steiner triple system S;.

Using the commutativity for any a € Lgs the left translation map A,
coincides with the right translation map p..

If L1(o) and Ly(x) are loops, a triple of bijections

(ar, B,7) : L1 — Ly such that a(x) x B(y) = v(x o y) is called an
isotopism.

If £1 and L5 are two affine Steiner loops associated to the same
STS by fixing two different elements 3 and €5, and if we denote
the opposite maps by p; and o, according to the triples

{x,Q1, p1(x)} and {x, Qa, p2(x)} in T, then the map

v 1 Ly — Lo, y(x) = pa(pug*(x)) induces an isotopism

(id,id,’y) Ly — Lo,
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Definition

The kernel of a homomorphism « : (L,0) — (L', %) of a loop L into
a loop L' is a normal subloop N of L. In case of a commutative
loop L a subloop N of L is normal if x+ (y + N) = (x+y)+ N
holds for all x,y € L.

Theorem
Let S be a Steiner triple system and Ls the corresponding affine
Steiner loop.
i) Lgr is a subloop of Ls if and only if R is a Steiner triple
subsystem of S containing 2.
i) If Lg is a normal subloop of Ls then each coset x + Lg
corresponds to a subsystem of S.

iil) If Lg is a normal subloop of Ls then the factor loop Q yields a
Steiner triple system Sq.

In the case where Lg is a normal subloop of Ls, the corresponding
left cosets are not necessarily isomorphic subsystems.
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Theorem

Let S be a Steiner triple system and Lgs the corresponding affine
Steiner loop with identity element Q). The automorphisms of S
fixing Q0 are exactly the automorphisms of Ls.

Corollary

Let fy be an automorphism of Ls fixing the identity element Q.
The map f(x) = fo(x) + a is an isomorphism of Ls onto the
isotopic affine Steiner loop Ls' corresponding to S with identity
element a = f(Q2). Moreover, the map f yields an automorphism of
S if and only if the translation p, : x — x + a is also an
automorphism of S.

If S is a Hall triple system, then the translations py, are
automorphisms of S and the automorphisms of S have the form
f(x) = fo(x) + a, where fy is an automorphism of Ls and a = ().
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Theorem

Let S be a Steiner triple system with n points, and let Ls be the
associated affine Steiner loop with identity element Q € S. Then
each translation of Ls is even and has the form

A = (Qx, —x)11 ... 7Ty
where each 7; is an even permutation of the form
7 = (vi,v2, ..., Vi)(—Vj, ..o, —V2, —V1).

Thus the multiplication group Mult(Ls) generated by all
translations of the loop Ls is contained in A,, and the stabilizer
Stabyruie(s)(2) is contained in Ap_1.
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Each A, can be written as A = (€, x, —x)ox, where o is a
permutation without any fixed point on the set Ls \ {Q, x, —x} for
each x € Ls \ {Q}.

We fix an element x # {Q}. As o, has no fixed point on the set
Ls \ {Q, x,—x} it does not contain any 1-cycle. If o, contains the
J-cycle (vi, va, va, ..., vj)-cycle, then the STS has the following
blocks: {x,v1,—w2}, {—v2, 2, w2}, {x,v2, —v3}, {—v3,Q, w3},

[ Vo U} {6 2}, s 6t i} (= v

X, vi,—vi}, {—vi,Q, v}, sincex+vi =wv, x+wv=w3, ...,

X + vj_1 = vj, x + vj = vq. Using these blocks the permutation o

has also the j-cycle (—v2, —v1, —Vj, ..., —v3) containing precisely
the elements —vi, —vs, ..., —vj. So each j-cycle (vi, vp, va, ..., vj) of
Ox appears in 0, together with j-cycle (—vj, ..., —v3, —va, —v1).

Since in oy every j-cycle appears with such a disjoint j-cycle, it is
an even permutation. Then also every Ay = (R, x, —x)ox is an
even permutation.
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Pash and mitre configuration

Steiner triple systems are often studied through their
configurations, which are given subsets of triples. Starting from two
triples {z,a1,a>} and {z, by, b} through one point z, two cases
are possible: either the third point ¢; in the triple through a; and
by coincides with the third point ¢, in the triple through a; and by
(Pasch configuration), or not. In the latter case, one can distinguish
further the case where the triple containing the two points ¢; and
c» contains also z (the mitre configuration centered in z).

y -y
-y v y I W
Q X -X o) X -X

Ficure: A Pasch configuration (left) and a mitre (righ entered in Q
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y p1 P2
Figure: Veblen point x

Definition

Let x be a point in a Steiner triple system, and let y # x. If,
together with {x, p1, p3}, {x, p2, pa}, and {y, p1, p2}, also

{y, p3,pa} is a triple of S, then x is called a Veblen point.
Alternatively, the point x is called a Veblen point, if any two triples
through x determine a Fano plane.

V.

O. Veblen and John Wesley Young, Projective geometry. Vol. 2.
Ginn, (1918) and Ch. J. Colbourn, A. Rosa, Triple Systems, Oxford
mathematical monographs, Clarendon Press, 1999.
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Definition

Let z be a point in a Steiner triple system, and let u # z. If,
together with {z, p1,ps}, {z, p2, pa}, {u, p1,p2}and {w, ps, ps},
also {u,w, z} is a triple of S, then z is called a Hall point.
Alternatively, the point z is called a Hall point, if any two triples
through z determine a mitre centered in z.

For any z € Ls, we will use the following map
bz = P_zPz = A_z\z

which plays a role in distinguishing the case where Q is contained in
a Pasch configuration from the case where Q is a Hall point.
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Li) {—x,Q,x} and {—y,Q,y} define a mitre centered in Q if and
onlyif x+y=—(—x—y) and i (y) =y,

1.ii) Q is a Hall point if and only if 1x(y) = (y +x) —x =y for all
x and y in S equivalently, Ls has the inverse property,

L.iii) Any point in S is a Hall point if and only if S is a HTS (see
D. Kral, E. Macajova, A. Por, J.-S. Sereni Characterization
results for Steiner triple systems and their application to
edge-colorings of cubic graphs Canad. J. Math., 62 (2), pp.
355-381).

2.0) {—x,Q,x} and {—y,Q,y} define a Pasch configuration if and
only if x +y = —x — y. Moreover, in this case v # id.

2.i1) Q is a Veblen point if and only if for all y # x it holds
x+y=—x—y and i(Lty) = Fy,

2.iii) Any point in S is a Veblen point if and only if S is a projective
geometry PG(d,2) (cf. Th. 8.15, p. 147, in Ch. J. Colbourn,
A. Rosa, Triple Systems, Oxford mathematical monographs).
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Let S be a STS(n) containing a Veblen point V. Then
n =3 (mod 4) and it holds
i) V is the neutral element Q of Ls if and only if, for any x # Q,
Px =
(Q,x, =x)(p1, g1)(=q1, =p1) -+ (o3, 4o ) (= Gozs, —pos).
Moreover, p_x =
(€, =, x)(p1, =q1)(q1, =p1) -+ (Prz3, =g )(qns, —pozs),

4
whereas pp, interchanges x with q;, and —x with —q;.

i) IfV #Q, then

pv =
(2,x, —=x)(p1, q1)(—q1, —p1) - - - (Pn
pP—-v
(Q, —x,x)(p1, —q1)(g1, —p1) - - - (pn

3, q"z3)(_q"%37 _p”;:”)

I =

3,=Gqn-3)(qn_3, —Pns).

4 4
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If R < S is a Steiner triple subsystem of order 9 containing the
triple {—x, Q, x}, then the restriction of py to R is simply

px = (Q,x, —x)(y, —v, u)(—u, v, —y).

| A\

Corollary

If S is a Hall triple system, then x — —x is an automorphism of
Ls. Moreover, n = 3% and it holds

Px =
(Q,x,—x)(a1, b1,c1)(—c1,—b1,—a1) - - - (at, b, ¢t )(—ct, — by, —at).)
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The investigation of the structure of any affine Steiner loop can be
reduced to consecutive extensions of simple ones. Hence we studied
extensions of a normal affine Steiner loop N by an affine Steiner
loop @ which yields affine Steiner loop L.

Extensions of normal (sub-)loops N by (factor) loops @ are much
more relaxed than in the case of groups

(cf. P. T. Nagy: Nuclear properties of loop extensions, Results in
Math. (2019), 74: 100).
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Definition

Let N and Q be affine Steiner loops of order w and z, respectively,
and let Q(N) be the set of w X w latin squares with coefficients in
the set N.
An operator ® : Q x Q — Q(N), which maps the pair (x,y) to a
latin square ®xy : N x N — N, and fulfills the following
conditions for all (x,x"),(v,y),(Z,Z') € @ x N:
i) ®px(y,x") =Sz p(x',y'), that is, ®y 5 is the transpose of
(D)-(J,,'
ii) the (symmetric) latin square g 5 is the table of addition of N;
i) s5(x,0") =X’
iV) q))—(’_;((X/, ¢}—,’g(y’,z’ ) =0
Pz :(Pxy(xsy), 7)) =0;
V) ¢;7_;(X,, q);,;((X,,X,)) = 0,'

is called a Steiner operator.

if and only if
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Theorem

Let N and Q be affine Steiner loops of order w and z, respectively,
and let ® : Q x Q — Q(N) be a Steiner operator.
If we define on L = Q x N the addition

()_(axl) + ()77)//) = ()_( + Y, q))?,}_/(xlﬂyl))a
then L is an affine Steiner loop of order v = wz, having N as a

normal subloop and such that L/N is isomorphic to Q.

Conversely, any affine Steiner loop L, having a normal subloop N
and a factor loop Q = L/N is isomorphic, for some given Steiner
operator ®, to the above one.
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Affine Hyperplane

Theorem

So is an affine hyperplane of S containing Q, if and only if Ls, is a
normal subloop of index 3 in Ls.

An affine hyperplane of S is a subsystem Sy, such that for any
x ¢ Sp the set S; of blocks through x which do not intersect Sy
turns out to be a second subsystem. Hence Sy is an affine
hyperplane of S, if, and only if, S is the union of three pairwise
disjoint subsystems

S=81US8 USq,

of the same cardinality w = 3, hence it is necessary that

n=3 mod 6

(cf. J. Doyen, X. Hubaut, M. Vandensavel, Ranks of Incidence
Matrices of Steiner Triple Systems. Mathematische Zeitschrift 163:
251-260.)
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Schreier Extension

Assume that Ls is the Schreier extension of the normal subgroup
N by an affine Steiner loop Li

(cf. P. T. Nagy and K. Strambach, Schreier Loops, Czechoslovak
Math. J. 58 (133), 759-786).

Since the affine loop Lg is abelian, this extension is central and it is
realized on Lx x N by the multiplication

(1) (K1, m)o (k2, m) = (k1 + K2, m + m + f(k1, K2)),

where f : L x L — N is a function with the property
f(k1,k2) = f(kKa, k1) for all k1, ky € Ly satisfying
(0, k2) = f(k1,0) = Q.
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Simple affine Steiner loops

If Ls is simple, i.e. it has no proper normal subloop, then the group
Mult(Ls) is primitive (see A. A. Albert, Quasigroup I, Trans.
Amer. Math. Soc. 54 (3), 507-519, Th. 8, p. 516).

Write 0 = M\ (Q, x, —x) 71, x € Ls \ {Q}.

Theorem

Let S be a simple Steiner triple system with n > 3 points and Lg
the corresponding affine Steiner loop.

(i) The group Mult(Ls) of Ls is isomorphic to Ay, if and only if
Mult(Ls) contains one of the permutations o.

(ii) If the order of one of the permutations oy is not divisible by 3,
then the group Mult(Ls) of Ls is isomorphic to A,.
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In K. Strambach, |. Stuhl, Translation groups of Steiner loops.
Discrete Mathematics, 309(13), 4225-4227, it is proved that if the
order of any product of two different translations of the STS of size
n > 3 is odd, then the multiplication group Mult(L) of the
corresponding projective Steiner loop L of order n+ 1 contains the
alternating group of order n+ 1.

Proof

If one has o € Mult(Ls), then the permutation

Mog! = (Q,x, —x) is a 3-cycle in the primitive subgroup
Mult(Ls) of A,. By Jordan's theorem on permutations,
Mult(Ls) = An. This proves assertion (i).

(i) If the order of the permutation oy is 3k + 2 for some x € Lg,
then one has o, = A3kT3_ If the order of the permutation o, is
3k + 1 for some x € Lg, then one has o, = )\i(2k+1). Hence

ox € Mult(Ls) and we are done by part i).
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Theorem

If S is a simple Steiner triple subsystem of order n containing a
Veblen point, then Ls is the loop having the alternating group A,
as its multiplication group, and Ls = Ap/An-1.

Corollary

| \

If S is a Steiner triple system of order n = 13. Then the group
Mult(Ls) is the alternating group Ais.

This follows from the classification of R. M. Guralnick, Subgroups
of prime power index in a simple group J. Algebra 81 (2), 304-311.

Proposition

Let S be a Steiner triple system of prime power cardinality
n %+ ‘;—:11, for any prime power q. If Mult(Ls) is simple, then the

group Mult(Ls) is the alternating group Ap,.

This is the case for instance, if n € {19,25,37,43,49,61,67,73}.



+ ]z §y % Q -x —j -3
z|-z x y zZ -y —x Q
+ -1 0 1 y|x -y z y -z Q -=x
IR A E A
-1 0 1 Qlz y x Q —-Xx -y -z
110 1 -1 X|-y -z Q@ % % z 7y
Jl-x Q -z -y z § =x
7l Q % -y -z § x z
¢Z,Z (bf,_)_/ (DZ,)_( ¢Z7Q q)f,f)_( d)f,f_)_/ ¢Z,*Z
Pz Pyy Pyx Pya Py Oy by
Sz: Pzy Prx Pz Px_x Ox_y;  Px_:
L: ®q: Po; Pox Poa Po-x Po-y Po-_:
S z: P35y Pz Pizo P x Pz Pz
yz Pyy Py Pya ¢y Py Py
S z; ® iz Pz Pz Pz x Pz ;s
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Choose a latin square on {—1,0,1} for ®5 5. Using the
corresponding STS blocks this determines the addition table

®_5 _5. Applying condition v) we obtain the places of the elements
(€2,0) in the table &5 _5. We have two choices for ®; _5 we could
switch 1 and —1 there:

Pz 2 ‘ Sz _z

b ;; ‘ b ; ;
+ (27_1) (2’0) (271) (_27_1) (_270) (_27
(z,-1) |(-z,-1) (-z,1) (-2z0) (©,0) (Q,1) (Q,-
(z,0) (-z,1) (-z,0) (-z,-1)| (2,-1) (2,00 (2,1
(z,1) (-z,0) (-z,-1) (-2z,1) (Q,1) (2,-1) (Q,0
(=z,-1) | (Q,0) (2,-1) (2,1) (z,-1) (z,1) (z,0
(—z,0) (2,1) (2,0) (Q,-1) (z,1) (z,0) (z,—
(-z,1) | (2,-1) (2,1) (©2,0) (z,0) (z,-1) (z,1
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Since the set
{(_27 _1)7 (_27 0)7 (_27 1)7 (27 _1)7 (27 0)7 (27 1)7 (Q7 0)7 (Qv 1), (Qv N 1)}
is closed under the loop operation it forms a STS subsystem with 9
elements. This determines the addition tables ®5 o and ®_5 .
Moreover, we do not have many choices for 3> and ¢_5 _5,
because the only loop with 3 elements is the cyclic group, thus, for
each of ®55 and ®_5 _5, we could only switch 1 and —1 in the
addition table of N.

The reader can produce in the same way the addition tables
corresponding to the cosets ¥ and —y, and to the cosets X and —X,
which are subsystems, as well.

Now we can freely choose a latin square on {—1,0,1} for ®; 5 and,
using the fact that Z + y = X, determine firstly the corresponding
addition table and, consequently, determine the corresponding latin
squares ®; _z and ®y 5, according to Definition 6 iv):

Agota Figula



ds - (27_1) ()?’1) ()?7_1) ()?,0)
2 (2,0) | (%00 (x,1) (x,-1)”
(z,1) |(x,—-1) (x,0) (x,1)

(notice, in passing, that the latin square on {—1,0,1} chosen here
does not correspond to a group, nor a loop, with 3 elements,
because it is not symmetric), hence

+ | (=%x,-1) (-x,0) (=x1)
YR (27_1) _)771) (_.)77_1) (_.)770)
T (2,0) | (=7.0)  (=y1) (-y.-1) 7
(1) | (=7,-1) (=0 (=y,1)
+ [ (=%-1) (=%,0)  (=x,1)
[0) (}7,—1) (_27_1) (_27 0) (_271)
v ()770) (_270) _271) (_27_1) .
¥.1) | (=z,1) (-z,-1) (-%0)




