On marked Conway algebras and their invariants

Seonmi Choi Joint with Yongju Bae and Seongjeong Kim

Kyungpook National University, Korea

LOOPS 2019 Conference

July 8, 2019

Contents

- 1 History
- 2 Preliminaries
 - HOMFLY polynomial invariant for links
 - Conway algebra and Conway type invariant
 - Generalized Conway algebra and its invariant
 - Polynomial invariant for oriented surface-links
- 3 Generalizations of Conway algebras and invariants for oriented surface-links
 - Marked Conway algebra
 - Marked Conway type invariant
 - Generalized marked Conway algebra
 - Generalized marked Conway type invariant

History

• (1984) V. F. R. Jones introduced a new polynomial for knots, which is called the *Jones polynomial* with the skein relation;

$$tV_{L_{+}}(t) - t^{-1}V_{L_{-}}(t) + (t^{\frac{1}{2}} - t^{-\frac{1}{2}})V_{L_{0}}(t) = 0.$$

• (1984.09~10.) The four research groups submitted the same result -the existence and properties of a new polynomial invariant for knots and links-, independently. This polynomial invariant generalizes both the Alexander-Conway polynomial and the Jones polynomials, which is called *HOMFLY polynomial* by combining the initials of its co-discoverers: J. Hoste, A. Ocneanu, K. Millet, P. J. Freyd, W. B. R. Lickorish, and D. N. Yetter. The skein relation is as follows.

$$vP_{L_{+}}(v,z) - v^{-1}P_{L_{-}}(v,z) = zP_{L_{0}}(v,z).$$

History

- (1985.04,1987) J. H. Przytycki and P. Traczyk introduced a *Conway algebra* and construct invariants of links valued in a Conway algebra, called *Conway type invariant*. The HOMFLY polynomial is obtained from Conway type invariants.
- The HOMFLY polynomial is also called the HOMFLY-PT polynomial. The addition of PT recognizes independent work carried out by J. H. Przytycki and P. Traczyk.
- (2017) L. H. Kauffman and S. Lambropoulou defined a new polynomial invariant with two different relations of self-crossings and mixed crossings.
- (2017) S. Kim generalized Conway algebras by applying two skein relations related to self-crossings and mixed crossings, which are called *generalized* Conway algebras.

Motivation

HOMFLY polynomial

Definition (Hoste-Ocneanu-Millet-Freyd-Lickorish-Yetter, 1985)

There is a unique function P from the set of isotopy classes of oriented links to the set of Laurent polynomials in v, z such that

- $vP_{L_{+}}(v,z) v^{-1}P_{L_{-}}(v,z) = zP_{L_{0}}(v,z)$,
- $P_L(v, z) = 1$ if L is the unknot.

The value P(L) of a link L is called the **HOMFLY** polynomial of L.

HOMFLY polynomial of 3₁

• The HOMFLY polynomial P_K of the trefoil knot K is $2v^2 - v^4 + v^2z^2$.

Conway algebra

Definition (Przytyski-Traczyk, 1987)

Let \mathcal{A} be a set with two binary operations \circ and / on \mathcal{A} . Let $\{a_n\}_{n=1}^{\infty} \subset \mathcal{A}$. A *Conway algebra* is the quadruple $(\mathcal{A}, \circ, /, \{a_n\}_{n=1}^{\infty})$ satisfying the following conditions:

- $a_n = a_n \circ a_{n+1}$ for all $n \in \mathbb{N}$,
- $(a \circ b) \circ (c \circ d) = (a \circ c) \circ (b \circ d) \text{ for all } a, b, c, d \in \mathcal{A}.$
 - ullet The operation / is the inverse operation of \circ .

Conway type invariant

• Let \mathcal{L} be the set of equivalence classes of oriented link diagrams.

Proposition (Przytyski-Traczyk, 1987)

Let $(A, \circ, /, \{a_n\}_{n=1}^{\infty})$ be a Conway algebra. There exists an invariant $W: \mathcal{L} \to \mathcal{A}$ satisfying the following properties:

- For the trivial link T_n of n components, $W(T_n) = a_n$,
- Por each crossing,

$$W(D_+)=W(D_-)\circ W(D_0)$$
,

where (D_+, D_-, D_0) is the oriented Conway triple.

The invariant W is called the Conway type invariant on the Conway algebra

$$W = W$$

Conway algebra

Example

1. Let $\mathcal{A} = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, r^{\pm 1}]$. Define binary operations \circ and / by

$$a \circ b = pa + qb + r$$
 and $a/b = p^{-1}a - p^{-1}qb - p^{-1}r$.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence defined by the recurrence formula

$$a_1 = 1$$
 and $(1-p)a_n = qa_{n+1} + r$.

Then $(\mathbb{Z}[p^{\pm 1}, q^{\pm 1}, r^{\pm 1}], \circ, /, \{a_n\}_{n=1}^{\infty})$ is a Conway algebra.

• By substituting $p = v^{-2}$, $q = v^{-1}z$ and r = 0, one can obtain the next example.

Conway type invariant

Example

2. Let $\mathcal{A}'=\mathbb{Z}[v^{\pm 1},z^{\pm 1}].$ Define the binary operations \circ and / by

$$a \circ b = v^{-2}a + v^{-1}zb$$
 and $a/b = v^{2}a - vzb$.

Denote $a_n = ((v - v^{-1})/z)^{n-1}$ for each n. Then $(\mathbb{Z}[v^{\pm 1}, z^{\pm 1}], \circ, /, \{a_n\}_{n=1}^{\infty})$ is a Conway algebra.

- Then one can obtain the Conway type invariant W valued in the Conway algebra \mathcal{A}' . The Conway type invariant W(L) of a link L is the HOMFLY polynomial of L.
- Hence we call it the HOMFLY-PT polynomial.

Conway type invariant of 3_1

• The calculation for the Conway type invariant of the trefoil K is $a_1/(a_2/a_1)$.

$$W\left(\begin{array}{c} & & \\ &$$

•
$$a_1/(a_2/a_1) = a_1/(p^{-1}a_2 - p^{-1}qa_1 - p^{-1}r)$$

 $= p^{-1}a_1 - p^{-1}q(p^{-1}a_2 - p^{-1}qa_1 - p^{-1}r) - p^{-1}r$
 $= 2p^{-1} + p^{-2}q^2 - p^{-2} + (p^{-2} + p^{-2}q - p^{-1})r$

• $2p^{-1} + p^{-2}q^2 - p^{-2} + (p^{-2} + p^{-2}q - p^{-1})r = 2v^2 - v^4 + v^2z^2$

Generalized Conway algebras

Definition (Kim, 2017)

Let $\widehat{\mathcal{A}}$ be a set with binary operations \circ , *, / and // on $\widehat{\mathcal{A}}$. Let $\{a_n\}_{n=1}^{\infty} \subset \widehat{\mathcal{A}}$. A generalized Conway algebra is the 6-tuple $(\widehat{\mathcal{A}}, \circ, *, /, //, \{a_n\}_{n=1}^{\infty})$ such that for $a, b, c, d \in \widehat{\mathcal{A}}$,

- $a_n = a_n \circ a_{n+1}$ for each $n \in \mathbb{N}$,
- $(a \circ b) \circ (c \circ d) = (a \circ c) \circ (b \circ d),$
- (a*b)*(c*d) = (a*c)*(b*d),
- $(a \circ b) \circ (c * d) = (a \circ c) \circ (b * d),$
- $(a \circ b) * (c \circ d) = (a * c) \circ (b * d).$

Invariants of Generalized Conway algebras

Proposition (Kim, 2017)

Let $(\widehat{\mathcal{A}}, \circ, /, *, //, \{a_n\}_{n=1}^{\infty})$ be a generalized Conway algebra. There uniquely exists the invariant $\widehat{W}: \mathcal{L} \to \widehat{\mathcal{A}}$ satisfying the following rules:

For each self crossing c,

$$\widehat{W}(D_+^c) = \widehat{W}(D_-^c) \circ \widehat{W}(D_0^c).$$

2 For each mixed crossing c,

$$\widehat{W}(D_+^c) = \widehat{W}(D_-^c) * \widehat{W}(D_0^c).$$

3 For the n-component trivial link T_n , $\widehat{W}(T_n) = a_n$.

We call \widehat{W} the generalized Conway type invariant valued in $(\widehat{\mathcal{A}}, \circ, /, *, //, \{a_n\}_{n=1}^{\infty})$.

Invariants of Generalized Conway algebras

 $\bullet \ \, \text{For each self crossing} \,\, c, \,\, \widehat{W}(D_+^c) = \widehat{W}(D_-^c) \circ \widehat{W}(D_0^c).$

② For each mixed crossing c, $\widehat{W}(D_+^c) = \widehat{W}(D_-^c) * \widehat{W}(D_0^c)$.

$$W = W + W = D$$

Example of generalized Conway algebras and invariants

Example

• Let $\widehat{\mathcal{A}} = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, r]$. Define the binary operations $\circ, *, /$ and // by

$$a \circ b = pa + qb$$
, $a/b = p^{-1}a - p^{-1}qb$,
 $a * b = pa + rb$, $a//b = p^{-1}a - p^{-1}rb$.

Denote $a_n = (\frac{1-p}{q})^{n-1}$ for each n. Then $(\widehat{\mathcal{A}}, \circ, /, *, //, \{a_n\}_{n=1}^{\infty})$ is a generalized Conway algebra.

• By substituting $p=v^{-2}$ and $q=r=v^{-1}z$, we can obtain another generalized Conway algebra $(\mathbb{Z}[v^{\pm 1},z^{\pm 1}],\circ,/,\{a_n\}_{n=1}^\infty)$ and hence the generalized Conway type invariant valued in $\mathbb{Z}[v^{\pm 1},z^{\pm 1}]$ is the HOMFLY-PT polynomial invariant.

Example of generalized Conway algebras and invariants

Example (Kim, 2018)

It is well-known that two link $L_1=L11n4180,0$ and $L_2=L11n3580,1$ have the same HOMFLY-PT polynomial. There exists a generalized Conway algebra $\widehat{\mathcal{A}}$ such that $\widehat{W}(L_1) \neq \widehat{W}(L_2)$.

L11n418{0,0}

L11n358{0,1}

Surface-links

Definition

- A *surface-link* is the image of a smooth embedding of a closed surface F in \mathbb{R}^4 .
- A surface-link is called a *surface-knot*, if *F* is connected.
- A surface-link is said to be *orientable* if *F* is orientable.

Marked graphs

Definition

- A marked graph is a 4-valent graph embedded in \mathbb{R}^3 with marked vertices.
- A marked graph diagram can be described by a diagram in \mathbb{R}^2 , which is a link diagram with some 4-valent vertices equipped with markers.

Figure: The spun trefoil

Surface-links and marked graph diagrams

Surface-links and marked graph diagrams

Prop. For an admissible marked graph diagram D, we can construct a surface-link F(D) from D.

Prop. Every surface-link F can be represented by an admissible marked graph diagram D.

Equivalent oriented marked graphs

• {oriented marked graphs}/ \cong \leftrightarrow {oriented marked graph diagrams}/ Γ_1 , \cdots , Γ_5

Figure: Yoshikawa moves of type 1

Equivalent oriented surface-links

• {oriented surface-links}/ \cong \leftrightarrow {oriented marked graph diagrams}/ $\Gamma_1, \dots, \Gamma_8$

Figure: Yoshikawa moves

Polynomial for oriented marked graphs

Proposition (Joung-Kamada-Kawauchi-Lee, 2017)

The polynomial $\ll \cdot \gg$ is an invariant for oriented marked graphs, i.e. for an oriented marked graph diagram D, the polynomial $\ll D \gg = \ll D \gg (a,x,y)$ is invariant under Yoshikawa moves of type 1. Moreover,

- ≪ *O* ≫= 1.
- $\ll D \sqcup O \gg = (a^{-6} + 1 + a^6) \ll D \gg$ for any oriented link diagram D.
- For any skein triple (D_+, D_-, D_0) of link diagrams,

$$a^{-9} \ll D_+ \gg -a^9 \ll D_- \gg = (a^{-3} - a^3) \ll D_0 \gg .$$

• For any marked skein triple (D^m, D_0^m, D_∞^m) ,

$$\ll D^m \gg = x \ll D_{\infty}^m \gg +y \ll D_0^m \gg$$
.

Polynomial for oriented marked graphs

Proposition (cont')

• For any skein triple (D_+, D_-, D_0) of link diagrams,

$$a^{-9} \ll D_+ \gg -a^9 \ll D_- \gg = (a^{-3} - a^3) \ll D_0 \gg .$$

• For any marked skein triple (D^m, D_0^m, D_∞^m) ,

$$\ll D^m \gg = x \ll D_{\infty}^m \gg +y \ll D_0^m \gg$$
.

Figure: Skein triple and Marked Skein triple

Polynomial for oriented surface-links

Proposition (Joung-Kamada-Kawauchi-Lee, 2017)

Let L be an oriented surface-link and let D be an oriented marked graph diagram presenting L. Then the polynomial $\ll D \gg \in \mathbb{Z}[a^{\pm 1},x,y]$, modulo the ideal generated by $\triangle(a)$, is an invariant of L up to multiplication by powers of $(a^{-6}+1+a^6)x+y$ and $x+(a^{-6}+1+a^6)y$ where $\triangle(a)=(a^{-6}+1+a^6)^2-1$.

• In this talk, this polynomial is called a JKKL polynomial.

Marked Conway algebra

Definition (Bae-C-Kim, 2018)

Let \mathcal{MA} be a set with three binary operations \circ , / and \bullet on \mathcal{MA} . Let $\{a_n\}_{n=1}^{\infty}\subset\mathcal{MA}$. A *marked Conway algebra* is the 5-tuple $(\mathcal{MA}, \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ satisfying

- 2 $a_n = a_n \circ a_{n+1}$ for every $n \in \mathbb{N}$,
- $(a \circ b) \circ (c \circ d) = (a \circ c) \circ (b \circ d) \text{ for } a, b, c, d \in \mathcal{MA},$

Marked Conway algebra

Example

Let $\mathcal{MA} = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, z^{\pm 1}, x, y]$. Define binary operations \circ , / and \bullet by

$$a \circ b = pa + qb + z$$
,

$$a/b = p^{-1}a - p^{-1}qb - p^{-1}z$$
,

$$a \bullet b = xa + yb$$
.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence defined by the recurrence formula

$$a_1 = 1$$
, $(1 - p)a_n = qa_{n+1} + z$.

Then $(\mathbb{Z}[p^{\pm 1}, q^{\pm 1}, z^{\pm 1}, x, y], \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ is a marked Conway algebra.

Construct the marked Conway type invariant

Now we construct the invariant MW of marked graph diagrams modulo Yoshikawa moves of type1 valued in a marked Conway algebra \mathcal{MA} . If a marked graph diagram D has markers, then for each marker m, we splice m satisfying

$$MW(D^m) = MW(D_{\infty}^m) \bullet MW(D_0^m). \tag{1}$$

If D has no markers, then

$$MW(D) = W(D).$$

Construct the marked Conway type invariant

Theorem (Bae-C-Kim, 2018)

Let \mathcal{ML}_I be the set of equivalence classes of oriented marked graph diagrams modulo Yoshikawa moves of type 1. Let $(\mathcal{MA}, \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ be a marked Conway algebra. Then there uniquely exists the invariant $MW: \mathcal{ML}_I \to \mathcal{MA}$, satisfying the following rules:

1 For a marker m the following relation holds:

$$MW(D^m) = MW(D^m_\infty) \bullet MW(D^m_0).$$

2 If D has no markers, then

$$MW(D) = W(D)$$
.

The invariant MW is called the marked Conway type invariant valued in MA.

Lemma

Let $(\mathcal{MA}, \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ be a marked Conway algebra such that for all $n \in \mathbb{N}$ and for every $a, b, c, d \in \mathcal{MA}$,

$$a_n \bullet a_{n+1} = a_n = a_{n+1} \bullet a_n \text{ and } (a \circ b) \bullet (c \circ d) = (a \bullet c) \circ (b \bullet d).$$

Then the marked Conway type invariant MW : $\mathcal{ML}_I \to \mathcal{MA}$ is invariant under Γ_6 and Γ_6' .

$$\begin{array}{c|c}
 & \Gamma_{6} \\
\hline
D & D'
\end{array}
\longrightarrow MW \left(\begin{array}{c}
 & MW \\
\hline
M & An
\end{array}\right) = MW \left(\begin{array}{c}
 & MW \\
\hline
M & An
\end{array}\right)$$

Lemma

Let $(\mathcal{MA}, \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ be a marked Conway algebra such that for all $n \in \mathbb{N}$ and for all $a, b, c, d \in \mathcal{MA}$,

$$a_n = a_{n+2}$$
 and $(a \circ b) \bullet (c \circ d) = (a \bullet c) \circ (b \bullet d)$.

Then the marked Conway type invariant MW : $\mathcal{ML}_I \to \mathcal{MA}$ is invariant under Γ_7 and Γ_8 .

Theorem (Bae-C-Kim, 2018)

Let \mathcal{ML}_{II} be the set of equivalence classes of oriented marked graph diagrams modulo oriented Yoshikawa moves. Let $(\mathcal{MA}, \circ, /, \bullet, \{a_n\}_{n=1}^{\infty})$ be a marked Conway algebra with three conditions: for all $n \in \mathbb{N}$ and for all $a, b, c, d \in \mathcal{MA}$,

$$a_n \bullet a_{n+1} = a_n = a_{n+1} \bullet a_n, \qquad a_n = a_{n+2},$$

$$(a \circ b) \bullet (c \circ d) = (a \bullet c) \circ (b \bullet d).$$

Then there uniquely exists the invariant of oriented surface-links, $MW: \mathcal{ML}_{II} \to \mathcal{MA}$, satisfying the following conditions:

- ① For a marker m, $MW(D^m) = MW(D^m_{\infty}) \bullet MW(D^m_0)$,
- ② For a classical crossing c, $MW(D_+^c) = MW(D_-^m) \circ MW(D_0^m)$,
- **3** If D has no markers, then MW(D) = W(D).

The invariant MW is the marked Conway type invariant valued in $\mathfrak{M} \mathcal{A}$ for oriented surface-links.

Marked Conway algebra

Example

Let $\mathcal{MA} = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, x, y]$. Define binary operations \circ , / and \bullet by

$$a \circ b = pa + qb$$
, $a/b = p^{-1}a - p^{-1}qb$, $a \bullet b = xa + yb$.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence defined by the recurrence formula

$$a_1 = 1$$
, $(1 - p)a_n = qa_{n+1}$.

- $\left(\mathbb{Z}[p^{\pm 1},q^{\pm 1},x,y]/(x+y(1-p)q^{-1},y+x(1-p)q^{-1}),\circ,/,\bullet,\{a_n\}_{n=1}^{\infty}\right)$ is a marked Conway algebra satisfying $a_n \bullet a_{n+1} = a_n = a_{n+1} \bullet a_n$.
- $\left(\mathbb{Z}[p^{\pm 1},q^{\pm 1},x,y]/((1-p)^2q^{-2}),\circ,/,\bullet,\{a_n\}_{n=1}^{\infty}\right)$ is a marked Conway algebra satisfying $a_n=a_{n+2}$.

Example

Let $\mathcal{MA} = \mathbb{Z}[a^{\pm 1}, x, y]$. Define binary operations \circ , / and \bullet by

$$\alpha \circ \beta = a^{18}\alpha + (a^6 - a^{12})\beta,$$

$$\alpha/\beta = a^{-18}\alpha + (a^{-6} - a^{-12})\beta,$$

$$\alpha \bullet \beta = x\alpha + y\beta.$$

Denote $a_n = (a^{-6} + 1 + a^6)^{n-1}$, for each $n \in \mathbb{N}$.

- This is obtained from the marked Conway algebra in the previous example by substituting $p=a^{18}$ and $q=(a^6-a^{12})$.
- Moreover, the JKKL polynomial invariant is obtained from the marked Conway type invariant MW valued in \mathcal{MA} .

Calculation of marked Conway type invariants

Calculation of marked Conway type invariants

- $MW(D) = MW(8_1) = [a_2 \bullet MW(D_1)] \bullet [a_3 \bullet a_2]$
- $MW(D_1) = MW(D_2) \circ [MW(D_2 \sqcup O) \circ MW(D_2)]$ = $[a_1/(a_2/a_1)] \circ [(a_2/(a_3/a_2)) \circ (a_1/(a_2/a_1))]$

Generalized marked Conway algebra

Definition

Let $\widehat{\mathcal{MA}}$ be a set with five binary operations \circ , *, /, // and • on $\widehat{\mathcal{MA}}$. Let $\{a_n\}_{n=1}^{\infty}\subset\widehat{\mathcal{MA}}$. A generalized marked Conway algebra is the 7-tuple $(\widehat{\mathcal{MA}}, \circ, *, /, //, \bullet, \{a_n\}_{n=1}^{\infty})$ such that for $a, b, c, d \in \widehat{\mathcal{MA}}$,

- ① $(a \circ b)/b = (a/b) \circ b = a = (a*b)//b = (a//b)*b$,
- $a_n = a_n \circ a_{n+1}$ for each $n \in \mathbb{N}$,
- $(a \circ b) \circ (c \circ d) = (a \circ c) \circ (b \circ d),$
- (a*b)*(c*d) = (a*c)*(b*d),
- $(a \circ b) \circ (c * d) = (a \circ c) \circ (b * d),$
- **6** $(a*b)*(c \circ d) = (a*c)*(b \circ d),$
- $(a \bullet b) \bullet (c \bullet d) = (a \bullet c) \bullet (b \bullet d).$

Construct a generalized marked Conway type invariant

Theorem (Bae-C-Kim, 2018)

Let \mathcal{ML}_I be the set of equivalence classes of oriented marked graph diagrams modulo Yoshikawa moves of type1. For a generalized marked Conway algebra $(\mathcal{MA}, \circ, *, /, //, \bullet, \{a_n\}_{n=1}^{\infty})$, there uniquely exists the invariant $\widehat{MW}: \mathcal{ML}_I \to \mathcal{MA}$, satisfying the following rules:

1 For a marker m the following relation holds:

$$\widehat{MW}(L^m) = \widehat{MW}(L_{\infty}^m) \bullet \widehat{MW}(L_0^m). \tag{2}$$

If L has no markers, then

$$\widehat{MW}(L) = \widehat{W}(L) \tag{3}$$

where W is a generalized Conway type invariant.

The invariant \widehat{MW} is an invariant for oriented marked graphs.

Thank you for your attention.