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Introduction, review Complex numbers

Complex numbers

Definition: Complex numbers
Let i be a symbol with i < R and x, y ∈ R real numbers. The sum z = x + iy is
called a complex number, the set of all complex numbers is denoted by C.
The complex number

z̄ = x − iy

is the conjugate of the complex number z. For z1 = x1 + iy1, z2 = x2 + iy2 we
define their sum and product as follows:

z1 + z2 = x1 + x2 + i(y1 + y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2).
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Introduction, review Complex numbers

Dividing complex numbers

Observe that for a complex number z = x + iy , 0 the product

zz̄ = (x + iy)(x − iy) = x2 + y2 , 0

is a real number.

Definition: reciprocal of a complex number
The reciprocal of the complex number z = x + iy , 0 is the complex number

z−1 =
x

x2 + y2 −
y

x2 + y2 i.

Proposition
Let c1, c2 ∈ C be complex numbers. If c1 , 0, then the equation c1z = c2 has
the unique solution z = c−1

1 c2 ∈ C in the set of complex numbers.
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Introduction, review Complex numbers

Basic properties of complex numbers

Proposition: basic properties
For any complex numbers a, b, c ∈ C the following hold:

a + b = b + a, ab = ba (commutativity)

(a + b) + c = a + (b + c), (ab)c = a(bc) (associativity)

0 + a = a, 1a = a (neutral elements)

−a ∈ C, and if b , 0 then b−1 ∈ C (inverse elements)

(a + b)c = ac + bc (multiplication distributes over addition)

That is, C is a field.

Conjugation preserves addition and multiplication: a + b = ā + b̄, ab = ā b̄.

Furthermore, i2 = −1, zz̄ ∈ R, zz̄ ≥ 0 and zz̄ = 0⇔ z = 0.
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Introduction, review Complex numbers

The complex plane

We may represent complex numbers as vectors.

R

iR

0

1
i

z = x + iy

z̄ = x − iy

a

z + a

C = R + iR
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Introduction, review Complex numbers

Absolute value, argument, polar form

Definition
Let z = x + iy ∈ C be a complex number. The real number
|z| =

√
zz̄ =

√
x2 + y2 is called the norm or absolute value of the complex

number z.
Any complex number z ∈ C can be written in the form z = |z|(cosϕ + i sinϕ),
where ϕ is the argument of z. This is called the polar or trigonometric form of
the complex number z.

R

iR

0 1

i

e =
z
|z|

= cosϕ + i sinϕ

z = |z|(cosϕ + i sinϕ)

sinϕ

cosϕ
ϕ
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Introduction, review Complex numbers

Multiplication via polar form

Proposition
When multiplying two complex numbers their absolute values multiplies out,
while their arguments add up.

z = r(cosα + i sinα)

w = s(cos β + i sin β)

zw = rs(cos(α + β) + i sin(α + β))

Corollary:

zn = rn(cos(nα) + i sin(nα))

R

iR

z
α

w

β

zw

α

11 / 262



Introduction, review Vectors and matrices

Subsection 2

Vectors and matrices
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Introduction, review Vectors and matrices

Vectors, Matrices

Definition: Vector
An ordered n-tuple of (real or complex) numbers is called an n-dimensional
(real or complex) vector: v = (v1, v2, . . . , vn) ∈ Rn or Cn.

Definition: Matrix
A matrix is a rectangular array of (real or complex) numbers arranged in rows
and columns. The individual items in a matrix are called its elements or
entries.

Example

A is a 2 × 3 matrix. The set of all 2 × 3 real matrices is denoted by R2×3.

A =

[
1 2 3
4 5 6

]
∈ R2×3.

Normally we put matrices between square brackets. 13 / 262



Introduction, review Vectors and matrices

Vectors, Matrices

Notation
We denote by aij the jth elementh of the ith row in the matrix A. If we want to
emphasize the notation, we may write A = [aij]n×m, where n ×m stands for the
size of A.

Example

A =

[
1 0 −4 0
5 −1 7 0

]
∈ R2×4

a21 = 5 , a13 = −4

Conventions
We consider vectors as column vectors, i. e. vectors are n × 1 matrices. We do
not distinguish between a 1 × 1 matrix and its only element, unless it is
neccessary. If we do not specify the size of a matrix, it is assumed to be a
square matrix of size n × n.
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Introduction, review Vectors and matrices

Operations with vectors

Definition: addition, multiplication by scalar

Let v = (v1, v2, . . . , vn)T and w = (w1,w2, . . . ,wn)T be two n-dimensional (real
or complex) vectors, and λ a (real or complex) scalar. The sum of v and w is
v + w = (v1 + w1, v2 + w2, . . . , vn + wn)T , while λv = (λv1, λv2, . . . , λvn)T .

Definition: linear combination
Let v1, v2, . . . , vm be vectors of the same size, and λ1, λ2, . . . , λm scalars. The
vector w = λ1v1 + λ2v2 + . . . + λmvm is called the linear combination of
v1, v2, . . . , vm with coefficients λ1, λ2, . . . , λm.

Example

For v = (2, 1,−3)T ,w = (1, 0,−2)T , λ = −4 and µ = 2 we have
λv + µw = (−6,−4, 8)T .
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Introduction, review Vectors and matrices

Subspace, basis

Definition: subspace
The set ∅ , H ⊆ Rn (or ⊆ Cn) is a subspace if for any v,w ∈ H, and for any
scalar λ we have v + w ∈ H and λv ∈ H, that is H is closed under addition and
multiplication by scalar.

Example

Well known examples in R3 are lines and planes that contain the origin. Also
notice that Rn itself and the one point set consisting of the zero vector are
subspaces.

Definition: basis
Let H be a subspace in Rn (or in Cn). The vectors b1, . . . ,bm form a basis of H
if any vector v ∈ H can be written as the linear combination of b1, . . . ,bm in a
unique way.
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Introduction, review Vectors and matrices

Linear independence, dimension

Definition: linear independence
The vectors v1, v2, . . . , vm are linearly independent, if from
0 = λ1v1 + λ2v2 + . . . + λmvm it follows that λ1 = λ2 = . . . = λm = 0, that is
the zero vector can be written as a linear combination of v1, v2, . . . , vm only in
a trivial way.

Note that the elements of a basis are linearly independent by definition.

Proposition
For every subspace H there exists a basis. Furthermore any two bases of H
consist of the same number of vectors. This number is called the dimension of
the subspace H. (The subspace consisting of the zero vector only is
considered to be zero dimensional.)
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Introduction, review Vectors and matrices

Scalar product, length

Definition: scalar product, length

Let v = (v1, v2, . . . , vn)T and w = (w1,w2, . . . ,wn)T be two n-dimensional
vectors. The scalar product of v and w is the scalar

〈v , w〉 = v · w = v1w1 + v2w2 + . . . + vnwn.

The length (or Euclidean norm) of the vector v is defined by

‖v‖2 =
√
〈v , v〉 =

√
v2

1 + v2
2 + . . . + v2

n.

Example

(1, 0,−3)T · (2, 1,−2)T = 2 · 1 + 0 · 1 + −3 · −2 = 8

‖(1, 0,−3)T‖2 =
√

1 + 0 + 9 =
√

10.
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Introduction, review Vectors and matrices

Properties of the scalar product

Proposition
The geometric meaning of the scalar product is the following statement:

〈v , w〉 = ‖v‖2 · ‖w‖2 · cosϕ,

where ϕ is the angle between v and w.

Elementary properties of the scalar product
Commutative: 〈v , w〉 = 〈w , v〉
Bilinear: 〈λv + w , u〉 = λ〈v , u〉 + 〈w , u〉
Positive definite: 〈v , v〉 ≥ 0, and equality holds iff v = 0

Remark. A vector v is of unit length iff 〈v , v〉 = 1. Two vectors v and w are
orthogonal (perpendicular) iff 〈v , w〉 = 0.
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Introduction, review Vectors and matrices

Special matrices

Definition: Diagonal matrix
The matrix A is diagonal if aij = 0 when i , j. A 3 × 3 example is

A =

 1 0 0
0 5 0
0 0 −2


Definition: Tridiagonal matrix
The matrix A is tridiagonal if aij = 0 when |i − j| > 1. A 4 × 4 example is

A =


1 2 0 0
−1 5 2 0
0 3 −2 3
0 0 1 7


20 / 262



Introduction, review Vectors and matrices

Special matrices

Definition: Upper (lower) triangular matrix
The matrix A is upper (lower) triangular if aij = 0 when i > j (i < j). A 3 × 3
example of an upper triangular matrix is

A =

 1 4 3
0 5 −9
0 0 −2


Definition: Upper (lower) Hessenberg matrix
The matrix A is upper (lower) Hessenberg if aij = 0 when i − 1 > j (i < j − 1).
A 4 × 4 example of an upper Hessenberg matrix is

A =


1 2 5 9
−1 5 2 −1
0 3 −2 3
0 0 1 7
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Introduction, review Vectors and matrices

Special matrices

Definition: Identity matrix
The n × n identity matrix In is a diagonal matrix with aii = 1 for all
i = 1, . . . , n. The 3 × 3 example is

I3 =

 1 0 0
0 1 0
0 0 1


Definition: Zero matrix
A matrix with all zero elements is called a zero matrix. A 3 × 4 example of a
zero matrix is

O3×4 =

 0 0 0 0
0 0 0 0
0 0 0 0
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Introduction, review Vectors and matrices

Transpose of a matrix

Definition: Transpose
Let A = [aij]n×m be a matrix. Its transpose is the matrix B = [bji]m×n with
bji = aij. We denote the transpose of A by AT .

Example

A =

[
1 2 3
4 5 6

]
→ AT =

 1 4
2 5
3 6


Roughly speaking transposing is reflecting the matrix with respect to its main
diagonal.
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Introduction, review Vectors and matrices

Scalar multiple of a matrix

Definition: Scalar multiple
Let A = [aij]n×m be a matrix and λ is a scalar. The scalar multiple of A by λ is
the matrix λA = [bij]n×m with bij = λaij.

Example

A =

[
1 2 3
4 5 6

]
→ −3 · A =

[
−3 −6 −9
−12 −15 −18

]

In words, we multiply the matrix A elementwise by λ.
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Introduction, review Vectors and matrices

Adding matrices

Definition: Matrix addition
Let A = [aij]n×m and B = [bij]n×m be two matrices of the same size. The sum
of A and B is defined by A + B = C = [cij]n×m with cij = aij + bij for all
i = 1, . . . , n and j = 1, . . . ,m.

Example [
1 2 3
4 5 6

]
+

[
1 0 −4
5 −1 7

]
=

[
2 2 −1
9 4 13

]
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Introduction, review Vectors and matrices

Multiplying matrices

Definition: Matrix multiplication
Let A = (aij)n×m and B = (bij)m×k be two matrices. The product of A and B is
defined by A · B = C = (ci,j)n×k where for all 1 ≤ j ≤ n and for all 1 ≤ ` ≤ k
we have

cj,` =

m∑
i=1

aj,i · bi,`.

Example

[
1 2 3

]
·

 4
5
6

 = [1 · 4 + 2 · 5 + 3 · 6] = [32]
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Introduction, review Vectors and matrices

Example

A =


−1 −2 0
0 1 0
1 1 1
3 −4 2

 , B =

 1 0
0 −1
2 1


1 0
0 −1
2 1

−1 −2 0 −1 2
0 1 0 0 −1
1 1 1 3 0
3 −4 2 7 6

A · B =


−1 2
0 −1
3 0
7 6
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Introduction, review Vectors and matrices

Basic properties of matrix operations

Proposition
A + B = B + A

(A + B) + C = A + (B + C)

(AB)C = A(BC)

(AB)T = BTAT

The product (if it exists) of upper (lower) triangular matrices is upper
(lower) triangular.

Caution!
Matrix multiplication is not commutative!
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Introduction, review Vectors and matrices

Special matrices

Definition: Symmetric matrix
The matrix A is symmetric if aij = aji for each i, j. In other words A is
symmetric if AT = A. A 3 × 3 example is

A =

 3 4 6
4 1 −2
6 −2 0


Definition: Nonsigular matrix, inverse

The matrix A is nonsingular if there exists a matrix A−1 with
AA−1 = A−1A = In. The matrix A−1 is the inverse of A.

Definition: Positive-definite

The real matrix A is positive-definite if it is symmetric and xTAx > 0 for all
x , 0. If we require xTAx ≥ 0 for all x , 0, then we say A is
positive-semidefinite. 29 / 262



Introduction, review Vectors and matrices

Orthogonal matrices

Definition: Orthogonal matrix

The matrix A is orthogonal if ATA = AAT = In.

Let ci be the ith column vector of the orthogonal matrix A. Then

ci
Tcj =

n∑
k=1

akiakj =
∑

k

(AT )ik(A)kj = (In)ij =

{
0, if i , j
1, otherwise

Thus, the column vectors are of unit length, and are pairwise orthogonal.
Similar can be shown for the row vectors.
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Introduction, review Vectors and matrices

Eigenvalues, eigenvectors

Definition: Eigenvalue, eigenvector
Let A be a complex n × n square matrix. The pair (λ, v) (λ ∈ C, v ∈ Cn) is
called an eigenvalue, eigenvector pair of A if λv = Av.

Proposition
If A is a real symmetric matrix, then all eigenvalues of A are real numbers.

Proposition
If A is positive-definite, then all eigenvalues of A are positive real numbers. If
A is positive-semidefinite, then all eigenvalues of A are nonnegative real
numbers.
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Introduction, review Determinants

Subsection 3

Determinants
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Introduction, review Determinants

Definition

Let A be a square matrix. We associate a number to A called the determinant
of A as follows.

Example
If A a 1 × 1 matrix, then the determinant is the only element of A.

det[3] = 3 , det[−4] = −4 , det[a] = a.

For 2 × 2 matrices the determinant is the product of the elements in the main
diagonal minus the product of the elements of the minor diagonal.

det
[

1 2
3 4

]
= 1 · 4 − 2 · 3 = −2 , det

[
a b
c d

]
= ad − bc.
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Introduction, review Determinants

Definition

Submatrix
Let A be an N × N matrix. The (N − 1) × (N − 1) matrix that we obtain by
deleting the ith row and the jth column form A is denoted by Aij.

Example

A =

 1 2 3
4 5 6
7 8 9

 , A33 =

[
1 2
4 5

]
, A12 =

[
4 6
7 9

]

Definition: Determinant
We define the determinant of 1 × 1 and 2 × 2 matrices as above.
Let A be an N × N matrix (N ≥ 3). We define the determinant of A recursively
as follows

det A =

N∑
k=1

(−1)k+1a1k det A1k.
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Introduction, review Determinants

Example

Example

det

 2 3 −4
1 0 −2
2 5 −1

 = (−1)2 · 2 · det
[

0 −2
5 −1

]
+

+(−1)3 · 3 · det
[

1 −2
2 −1

]
+ (−1)4 · (−4) · det

[
1 0
2 5

]
=

2 · (0 · (−1) − 5 · (−2)) − 3 · (1 · (−1) − 2 · (−2)) + (−4) · (1 · 5 − 2 · 0) =

= 20 − 9 − 20 = −9
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Introduction, review Determinants

Properties of determinants

The following statement is fundamental in understanding determinants.

Proposation
If we swap two rows (or two columns, respectively) of a matrix, its
determinant multiplies by -1.

Example

det

 2 3 −4
1 0 −2
2 5 −1

 = (−1) · det

 2 5 −1
1 0 −2
2 3 −4


Corollary
If two rows (or two columns, respectively) of a matrix are identical, then its
determinant is 0.
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Introduction, review Determinants

Properties of determinants

Theorem
Let A be a square matrix, and use the notation introduced above.

N∑
j=1

(−1)(i+j) · akj · det Aij =

{
det A , if k = i,
0 , otherwise.

In particular, we may develop a determinant with respect to any row (or
column).

Corollary
The determinant won’t change if we add a multiple of a row (or column,
respectively) to another row (or column, respectively).
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Introduction, review Determinants

Properties of determinants

Lemma
1 det IN = 1
2 If A is upper or lower triangular, then det A = a11 · a22 · . . . · aNN .

3 det(AT ) = det A
4 det(A−1) = (det A)−1

Theorem
Let A be B two square matrices of the same size. Then

det(AB) = det A · det B.
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Subsection 4

Vector and matrix norms
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Introduction, review Vector and matrix norms

Vector norms

Definition: p-norm of a vector

Let p ≥ 1, the p-norm (or Lp-norm) of a vector x = [x1, . . . , xn]T is defined by

‖x‖p = (|x1|
p + . . . + |xn|

p)1/p.

Example

Let x = [2,−3, 12]T , then

‖x‖1 = |2| + | − 3| + |12| = 17,

and
‖x‖2 =

√
22 + (−3)2 + 122 =

√
157.
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Introduction, review Vector and matrix norms

Vector norms

Let x = [x1, . . . , xn]T , and M = max |xi|. Then

lim
p→∞
‖x‖p = lim

p→∞

M (
|x1|

p

Mp + . . . +
|xn|

p

Mp

)1/p = lim
p→∞

[M(K)1/p] = M,

thus the following definition is reasonable.

Definition:∞-norm of a vector

For x = [x1, . . . , xn]T we define

‖x‖∞ = max
1≤i≤n

|xi|.

Example

Let x = [2,−3, 12]T , then

‖x‖∞ = max{|2|, | − 3|, |12|} = 12.
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Introduction, review Vector and matrix norms

Matrix norms

Definition: Matrix norm
For each vector norm (p ∈ [1,∞]), we define an associated matrix norm as
follows

‖A‖p = max
x,0

‖Ax‖p
‖x‖p

.

Proposition

‖Ax‖p ≤ ‖A‖p‖x‖p.

Remark. The definition does not require that A be square, but we assume that
throughout the course.

The cases p = 1, 2,∞ are of particular interest. However, the definition is not
feasible to calculate norms directly.
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Introduction, review Vector and matrix norms

Matrix norms

Theorem
Let A = [aij]n×n be a square matrix, then

a) ‖A‖1 = max1≤j≤n
∑n

i=1 |aij|,

b) ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij|,

c) ‖A‖2 = µ1/2
max,

where µmax is the largest eigenvalue of ATA.

We remark that (ATA)T = ATA, hence ATA is symmetric, thus its eigenvalues
are real. Also, xT (ATA)x = (Ax)T (Ax) = ‖Ax‖22 ≥ 0, and so µmax ≥ 0.

We only sketch the proof of part a). Part b) can be shown similarly, while we
are going to come back to the eigenvalue problem later in the course.
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Introduction, review Vector and matrix norms

Proof

Write ‖A‖∗1 = max1≤j≤n
∑n

i=1 |aij|.

‖Ax‖1 =

n∑
i=1

|(Ax)i| =

n∑
i=1

∣∣∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣∣∣ ≤
n∑

i=1

n∑
j=1

|aij||xj|

=

n∑
j=1

 n∑
i=1

|aij|

 |xj| ≤

max
1≤j≤n

n∑
i=1

|aij|

 n∑
j=1

|xj| = ‖A‖∗1‖x‖1

Thus, ‖A‖∗1 ≥ ‖A‖1.

Now, let J be the value of j for which the column sum
∑n

i=1 |aij| is maximal,
and let z be a vector with all 0 elements except zJ = 1. Then ‖z‖1 = 1, and
‖A‖1‖z‖1 ≥ ‖Az‖1 = ‖A‖∗1 = ‖A‖∗1‖z‖1, hence ‖A‖∗1 ≤ ‖A‖1. This completes the
proof of part a).
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Introduction, review Vector and matrix norms

Example

Example
Compute the ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms of the following matrix

A =

 2 3 −4
1 0 −2
2 5 −1

 .
For the column sums

∑3
i=1 |aij| we obtain 5, 8 and 7 for j = 1, 2 and 3

respectively. Thus ‖A‖1 = max{5, 8, 7} = 8.

Similarly, for the row sums
∑3

j=1 |aij| we obtain 9, 3 and 8 for i = 1, 2 and 3
respectively. Thus ‖A‖∞ = max{9, 3, 8} = 9.
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Introduction, review Vector and matrix norms

Example

To find the ‖ · ‖2 norm, first we need to compute AAT .

AAT =

 29 10 23
10 5 4
23 4 30

 .

The eigenvales of AAT are (approximately) 54.483, 9.358 and 0.159. (We are
going to study the problem of finding the eigenvalues of a matrix later during
the course.)

Thus ‖A‖2 =
√

54.483 = 7.381.
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Section 2

Systems of linear equations
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Systems of linear equations Gaussian Elimination

Subsection 1

Gaussian Elimination
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Systems of linear equations Gaussian Elimination

Systems of linear equations

Example 
x1 + x2 + 2x4 + x5 = 1
−x1 − x2 + x3 − x4 − x5 = −2
2x1 + 2x2 + 2x3 + 6x4 + x5 = 0

Definition: System of linear equations

Let A ∈ Cn×m and b ∈ Cn. The equation Ax = b is called a system of linear
equations, where x = [x1, x2, . . . , xn]T is the unknown, A is called the
coefficient matrix, and b is the constant vector on the right hand side of the
equation.

Matrix form  1 1 0 2 1 1
−1 −1 1 −1 −1 −2
2 2 2 6 1 0

 = [A|b]
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Systems of linear equations Gaussian Elimination

Solution of a system of linear equations

Definition: solution
Let Ax = b be a system of linear equations. The vector x0 is a solution of the
system if Ax0 = b holds true.

How to solve a system?
We say that a system of linear equations is solved if we found all solutions.

Example
Consider the following system over the real numbers:{

x1 + x2 = 1
x3 = −2

Solution: S = {(1 − t, t,−2)T | t ∈ R}.
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Systems of linear equations Gaussian Elimination

Solution of a system of linear equations

Theorem
A system of linear equations can have either 0, 1 or infinitely many solutions.

As a start, we are going to deal with a system of linear equations Ax = b
where A is a sqaure matrix, and the system has a unique solution. Later, we
are going to examine the other cases as well.

Proposition
The system of linear equations Ax = b (A is a square matrix) has a unique
solution if, and only if, A is nonsingular.

We don’t prove this statement now, it will be trasparent later during the course.
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Systems of linear equations Gaussian Elimination

Solving upper triangular systems

Example
Solve the following system of linear equations!

x1 + 2x2 + x3 = 1
2x2 + x3 = −2

4x3 = 0

This system can be solved easily, by substituting back the known values,
starting from the last equation. First, we obtain x3 = 0/4 = 0, then from the
second equation we get x2 = −2 − x3 = −2. Finally we calculate
x1 = 1 − 2x2 − x3 = 5.

From this example one can see that solving a system where A is upper
triangular is easy, and has a unique solution provided that the diagonal
elements differ from 0. Thus, we shall transform our system to an upper
triangular form with nonzero diagonals.
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Systems of linear equations Gaussian Elimination

Homogeneous systems

Example
Consider the following system of linear equations:

x1 + 2x2 + x3 = 0
−x1 + 2x2 + x3 = 0
2x1 + 4x3 = 0

In this case b = 0. Observe, that x = 0 is a solution. (It’s not hard to check,
that in this case 0 is the only solution.)

Definition: homogeneous systems of linear equations
A system of linear equations Ax = b is called homogenous if b = 0.

As a consequence, we readily deduce the following

Theorem
A homogeneous system of linear equations can have either 1 or infinitely
many solutions. 53 / 262



Systems of linear equations Gaussian Elimination

Gaussian elemination

Example
Solve the following system of linear equations!

x1 − 2x2 − 3x3 = 0 (I.)
2x2 + x3 = −8 (II.)

−x1 + x2 + 2x3 = 3 (III.)

We use the matrix form to carry out the algorithm. The idea is that adding a
multiple of an equation to another equation won’t change the solution.

 1 −2 −3 0
0 2 1 −8
−1 1 2 3

 III.+I.
∼

 1 −2 −3 0
0 2 1 −8
0 −1 −1 3
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Gaussian elimination

 1 −2 −3 0
0 2 1 −8
0 −1 −1 3

 III.+II./2
∼

 1 −2 −3 0
0 2 1 −8
0 0 −1/2 −1


After substituting back, we obtain the unique solution:
x1 = −4, x2 = −5, x3 = 2.

The main idea was to cancel every element under the main diagonal going
column by column. First we used a11 to eliminate a21 and a31. (In the example
a21 was already zero, we didn’t need to do anything with it.) Then we used
a22 to eliminate a32. Note that this second step cannot ruin the previously
produced zeros in the first column. This idea can be generalized to larger
systems.
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Gaussian elimination

Consider a general system Ax = b, where A is an N × N square matrix.

a11 a12 a13 · · · a1N b1
a21 a22 a23 · · · a2N b2
a31 a32 a33 · · · a3N b3
...

...
...

. . .
...

...

aN1 aN2 aN3 · · · aNN bN


Assume that a11 , 0. To eliminate the first column, for j = 2, . . . ,N we take
the −aj1/a11 multiple of the first row, and add it to the jth row, to make aj1 = 0.
If a11 = 0, then first we find a j with aj1 , 0, and swap the first row with the
jth row, and then proceed as before.
If the first column of A contains 0’s only, then the algorithm stops, and returns
that the system doesn’t have a unique solution.
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Gaussian elimination

Assuming that the algorithm didn’t stop, we obtained the following.

a11 a12 a13 · · · a1N b1
0 a′22 a′23 · · · a′2N b′2
0 a′32 a′33 · · · a′3N b′3
...

...
...

. . .
...

...

0 a′N2 a′N3 · · · a′NN b′N


We may procced with a′22 as pivot element, and repeat the previous step to
eliminate second column (under a′22), and so on. Either the algorithm stops at
some point, or after N − 1 steps we arrive to an upper triangular form, with
nonzero diagonal elements, that can be solved backward easily.
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Gaussian elimination - via computer

Problem
If we use Gaussian algorithm on a computer, and the pivot element aii is
nearly zero, the computer might produce serious arithmetic errors.

Thus the most important modification to the classical elimination scheme that
must be made to produce a good computer algorithm is this: we interchange
rows whenever |aii| is too small, and not only when it is zero.

Several strategies are available for deciding when a pivot is too small to use.
We shall see that row swaps require a negligible amount of work compared to
actual elimination calculations, thus we will always switch row i with row l,
where ali is the largest (in absolute value) of all the potential pivots.
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Gaussian elimination with partial pivoting

Gaussian elimination with partial pivoting
Assume that the first i − 1 columns of the matrix are already eliminated.
Proceed as follows:

1 Search the potential pivots aii, ai+1,i, . . . , aNi for the one that has the
largest absolute value.

2 If all potential pivots are zero then stop, the system doesn’t have a unique
solution.

3 If ali is the potential pivot of the largest absolute value, then switch rows
i and l.

4 For all j = i + 1, . . . ,N add −aji/aii times the ith row to the jth row.
5 Proceed to the (i + 1)th column.

59 / 262



Systems of linear equations Gaussian Elimination

Running time

For the i th column we make N − i row operations, and in each row operation
we need to do N − i multiplication. Thus altogether we need

N∑
i=1

(N − i)2 =

N∑
i=1

(N2 − 2Ni + i2) ≈ N3 − N3 +
N3

3
=

N3

3

multiplication.
It’s not hard to see, that backward substitution and row swaps require O(N2)
running time only.

Theorem
Solving a system of linear equations using Gaussian elimination with partial
pivoting and back substitution requires O(N3) running time, where N is the
number of equations (and unknowns).
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Row operations revisited

The two row operations used to reduce A to upper triangular form can be
thought of as resulting from premultiplications by certain elementary
matrices. This idea leads to interesting new observations. We explain the idea
through an example.

Example
Apply Gaussian elimination with partial pivoting to the following matrix!

A =

1 0 1
2 5 −2
3 6 9


(Source of the numerical example: http://www8.cs.umu.se/kurser/5DV005/HT10/gauss.pdf)
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Row operations revisited

Focus on the first column of A1 = A. We decide to swap row 3 and row 1,
because row 3 contains the element which has the largest absolute value.
Observe that this change can be carried out by premultiplying with the matrix

P1 =

0 0 1
0 1 0
1 0 0

 .
Hence

Ã1 = P1A1 =

0 0 1
0 1 0
1 0 0


1 0 1
2 5 −2
3 6 9

 =

3 6 9
2 5 −2
1 0 1

 .
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Row operations revisited

Now we are ready to clear the first column of Ã1. We define

M1 =


1 0 0
− 2

3 1 0
− 1

3 0 1

 ,

and so

A2 = M1Ã1 =


1 0 0
− 2

3 1 0
− 1

3 0 1


3 6 9
2 5 −2
1 0 1

 =

3 6 9
0 1 −8
0 −2 −2

 .
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Row operations revisited

We continue with the second column of A2. We swap row 2 and row 3,
because row 3 contains the element which has the largest absolute value. This
can be carried out by premultiplying with the matrix

P2 =

1 0 0
0 0 1
0 1 0

 .
We obtain

Ã2 = P2A2 =

1 0 0
0 0 1
0 1 0


3 6 9
0 1 −8
0 −2 −2

 =

3 6 9
0 −2 −2
0 1 −8

 .
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Row operations revisited

Finally, we take care of the second column of Ã2. To do this, we define

M2 =


1 0 0
0 1 0
0 1

2 1

 ,
and so we get

A3 = M2Ã2 =


1 0 0
0 1 0
0 1

2 1


3 6 9
0 −2 −2
0 1 −8

 =

3 6 9
0 −2 −2
0 0 −9

 .
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Subsection 2

LU decomposition
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The upper triangular form

We have now arrived at an upper triangular matrix

U = A3 =

3 6 9
0 −2 −2
0 0 −9

 .
By construction we have

U = A3 = M2Ã2 = M2P2A2 = M2P2M1Ã1 = M2P2M1P1A1 = M2P2M1P1A,

or equivalently

A = P−1
1 M−1

1 P−1
2 M−1

2 U.
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Inverses of the multipliers

Interchanging any two rows can be undone by interchanging the same two
rows one more time, thus

P−1
1 = P1 =

0 0 1
0 1 0
1 0 0

 , P−1
2 = P2 =

1 0 0
0 0 1
0 1 0

 .
How can one undo adding a multiple of, say, row 1 to row 3? By subtracting
the same multiple of row 1 from the new row 3. Thus

M−1
1 =


1 0 0
2
3 1 0
1
3 0 1

 , M−1
2 =


1 0 0
0 1 0
0 − 1

2 1

 .
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LU decomposition

Now, define

P = P2P1 =

0 0 1
1 0 0
0 1 0

 ,
and multiply both sides of the equation by P! We obtain

P2P1A = P2P1(P−1
1 M−1

1 P−1
2 M−1

2 U) = P2M−1
1 P−1

2 M−1
2 U.

The good news is that we got rid of P1 and P−1
1 .

We claim, that P2M−1
1 P−1

2 M−1
2 is a lower a triangular matrix with all 1’s in the

main diagonal.
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LU decomposition

We know that the effect of multiplying with P2 from the left is to interchange
rows 2 and 3. Similarly, the effect of multiplying with P−1

2 = P2 from the right
is to interchange columns 2 and 3. Therefore

P2M−1
1 P−1

2 = (P2M−1
1 )P2 =


1 0 0
1
3 0 1
2
3 1 0


1 0 0
0 0 1
0 1 0

 =


1 0 0
1
3 1 0
2
3 0 1

 .
Finally,

L = P2M−1
1 P−1

2 M−1
2 =


1 0 0
1
3 1 0
2
3 0 1



1 0 0
0 1 0
0 − 1

2 1

 =


1 0 0
1
3 1 0
2
3 − 1

2 1

 .
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LU decomposition

Using the method showed in the example, we can prove the following
theorem.

Theorem
Let A be an N × N nonsingular matrix. Then there exists a permutation matrix
P, an upper triangular matrix U, and a lower triangular matrix L with all 1’s in
the main diagonal, such that

PA = LU.

Notice that to calculate the matrices P,U and L we essentially have to do a
Gaussian elimination with partial pivoting. In the example we obtained

PA =

0 0 1
1 0 0
0 1 0


1 0 1
2 5 −2
3 6 9

 =


1 0 0
1
3 1 0
2
3 − 1

2 1


3 6 9
0 −2 −2
0 0 −9

 = LU.
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Subsection 3

Applications of the Gaussian Elimination and the LU
decomposition
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Inverse matrix

Let A be an N × N matrix, and we would like to calculate A−1. Consider the
first column of A−1, and denote it by x1. By definition AA−1 = In, hence

Ax1 = [1, 0, 0, . . . , 0]T

Thus we can calculate the first column of A−1 by solving a system of linear
equations with coefficient matrix A.

Similarly, if x2 is the second column of A−1, then

Ax2 = [0, 1, 0, . . . , 0]T

As before, x2 can be calculated by solving a system of linear equations with
coefficient matrix A.

We can continue, and so each column of the inverse can be determined.
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Inverse matrix

Observe, that we can take advantage of the fact that all systems have the same
coefficient matrix A, thus we can perform the Gaussian elimination
simoultaneously, as shown in the following example.

Example
Find the inverse of the following matrix.

A =

 1 1 −2
−2 −1 4
−1 −1 3


 1 1 −2 1 0 0
−2 −1 4 0 1 0
−1 −1 3 0 0 1

 II.+2I.,III.+I.
∼

 1 1 −2 1 0 0
0 1 0 2 1 0
0 0 1 1 0 1
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Inverse matrix

Notice that solving backward can also be performed in the matrix form, we
need to eliminate backwards the elements above the diagonal. 1 1 −2 1 0 0

0 1 0 2 1 0
0 0 1 1 0 1

 I.+2III.
∼

 1 1 0 3 0 2
0 1 0 2 1 0
0 0 1 1 0 1

 I.−II.
∼

 1 0 0 1 −1 2
0 1 0 2 1 0
0 0 1 1 0 1


Observe that what we obtained on the right handside is exactly the desired
inverse of A

A−1 =

 1 −1 2
2 1 0
1 0 1

 .
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Simoultaneous solving

Analyzing the algorithm one can prove the following simple proposition.

Proposition
The inverse (if it exists) of an upper (lower) triangular matrix is upper (lower)
triangular.

Note that actually we just solved the matrix equation AX = IN for the square
matrix X as unkonwn. Also we may observe that the role of IN was
unimportant, the same algorithm solves the matrix equation AX = B, where
A,B are given square matrices, and X is the unknown square matrix.
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Systems with the same matrix

Solving the matrix equation AX = B was just a clever way of solving N
systems of linear equations via the same coefficient matrix A simoultaneously,
at the same.

However it may happen that we need to solve systems of linear equations with
the same coefficient matrix one after another. One obvious way to deal with
this problem is to calculate the inverse A−1, and then each system can be
solved very effectively in just O(N2) time.

We can do a bit better: when solving the first system we can also calculate the
LU decomposition of A „for free”.
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Systems with the same matrix

Assume that we already know the LU decomposition of a matrix A, and we
would like to solve a system of linear equtions Ax = b.

First we premultiply the equation by P: PAx = Pb, which can be rewritten as
LUx = Pb. This can be solved in the form

Ly = Pb
Ux = y

Observe that Ly = Pb can be solved in O(N2) time by forward substitution,
while Ux = y can be solved in O(N2) time by backward substitution.
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Subsection 4

Banded systems, cubic spline interpolation
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Sparse and banded systems

The large linear systems that arise in applications are usually sparse, that is,
most of the matrix coefficients are zero. Many of these systems can, by
properly ordering the equations and unknowns, be put into banded form,
where all elements of the coefficient matrix are zero outside some relatively
small band around the main diagonal.

Since zeros play a very important role in the elimination, it is possible to take
advantage of the banded property, and one may find faster solving methods
than simple Gaussian elimination. We also note here that if A is banded, so are
the matrices L and U in its LU decomposition.

We are going to come back to the special algorithms and theoretical
background for sparse and banded systems later in the course. Here we
present a very important mathematical concept that naturally leads to banded
systems.
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An application

Definition: Interpolation

We are given the data points (x1, y1), (x2, y2), . . . , (xN , yN) in R2. The real
function f interpolates to the given data points if f (xi) = yi for all i = 1, . . . ,N.

Definition: Cubic spline
Let s : (a, b) ⊂ R→ R be a function, and let
a = x0 < x1 < x2 < . . . < xN < xN+1 = b be a partition of the interval (a, b).
The function s(x) is a cubic spline with respect to the given partition if
s(x), s′(x) and s′′(x) are continuous on (a, b), and s(x) is a cubic polinomial on
each subinterval (xi, xi+1) (i = 0, . . . ,N).
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Cubic spline interpolation

Definition: cubic spline interpolation

We are given the data points (x1, y1), (x2, y2), . . . , (xN , yN) in R2. The real
function s : (a, b) ⊂ R→ R is a cubic spline interpolant to the data points, if
s(x) interpolates to the given data points and s(x) is a cubic spline with respect
to the partition a = x0 < x1 < x2 < . . . < xN < xN+1 = b.

Remark. Usually we restrict the function s(x) to [x1, xN].

Cubic spline interpolations are interesting from both theoretical and practical
point of view.
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Calculating cubic spline interpolations

Proposition
The cubic polynomial

si(x) = yi +

[
yi+1 − yi

xi+1 − xi
−

(xi+1 − xi)(2σi + σi+1)
6

]
(x − xi) (1)

+
σi

2
(x − xi)2 +

σi+1 − σi

6(xi+1 − xi)
(x − xi)3

satisfies si(xi) = yi, si(xi+1) = yi+1, s′′i (xi) = σi, and s′′i (xi+1) = σi+1.

Thus, if we prescribe the value of the second derivative at xi to be σi for all
i = 1, . . . ,N, then we have a unique candidate for the cubic spline interpolant.
It remains to ensure that the first derivative is continuous at the points
x2, x3, . . . , xN−1.
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Calculating cubic spline interpolations

Proposition
We define s(x) on [xi, xi+1] to be si(x) from (1) (i = 1, . . . ,N − 1). The first
derivative s′(x) is continuous on (x1, xN) if, and only if,

h1+h2
3

h2
6 0 0 . . . 0 0

...
. . .

0 . . . hi
6

hi+hi+1
3

hi+1
6 . . . 0
. . .

...

0 0 . . . 0 0 hN−2
6

hN−2+hN−1
3





σ2
...

σi+1
...

σN−1


=



r1 −
h1
6 σ1
...

ri
...

rN−2 −
hN−1

6 σN


where hi = xi+1 − xi and ri = (yi+2 − yi+1)/hi+1 − (yi+1 − yi)/hi.

The cubic spline interpolation problem leads to a tridiagonal system of linear
equations.
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Cubic spline interpolations

Definition
If we set σ1 = σN = 0, and there exists a unique cubic spline interpolant, then
it is called the natural cubic spline interpolant.

The following theorem intuitively shows that natural cubic spline interpolant
are the „least curved” interpolants.

Theorem
Among all functions that are continuous, with continuous first and second
derivatives, which interpolate to the data points (xi, yi), i = 1, . . . ,N, the
natural cubic spline interpolant s(x) minimizes∫ xN

x1

[s′′(x)]2dx.
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Section 3

Least Square Problems
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Subsection 1

Under and overdetermined systems
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Problem setting

1 Let A be a matrix with n columns and m rows, and b be an
m-dimensional column vector.

2 The system

Ax = b (2)

of linear equations has m equations in n indeterminates.
3 (2) has a unique solution only if n = m, that is, if A is square. (And, then

only if A is nonsingular.)
4 (2) may have (a) infinitely many solutions, or (b) no solution at all.
5 In case (a), we may be interested in small solutions: solutions with least

2-norms.
6 In case (b), we may be happy to find a vector x which nearly solves (2),

that is, where Ax − b has least 2-norm.
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Least square problems for underdetermined systems: m < n

Assume that the number of equations is less than the number of
indeterminates. Then:

1 We say that the system of linear equations
is underdetermined.

2 The matrix A is horizontally stretched.
3 There are usually infinitely many

solutions.
4 The problem we want to solve is

minimize ‖x‖2 such that Ax = b. (3)

5 Example: Minimize
√

x2 + y2 such that
5x − 3y = 15.
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Least square problems for overdetermined systems: m > n

Assume that the number of equations is more than the number of
indeterminates. Then:

1 We say that the system of linear equations
is overdetermined.

2 The matrix A is vertically stretched.
3 There is usually no solution.
4 The problem we want to solve is

minimize ‖Ax − b‖2. (4)

5 Example: The fitting line to the points
(1, 2), (4, 3), (5, 7):

2 = m + b (5)
3 = 4m + b (6)
7 = 5m + b (7)
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Solution of overdetermined systems

Theorem
(a) The vector x solves the problem

minimize ‖Ax − b‖2
if and only if ATAx = ATb.

(b) The system ATAx = ATb has always a solution which is unique if the
columns of A are linearly independent.

Proof. (a) Assume ATAx = ATb. Let y be arbitrary and e = y − x.

‖A(x + e) − b‖22 = (A(x + e) − b)T (A(x + e) − b)

= (Ax − b)T (Ax − b) + 2(Ae)T (Ax − b) + (Ae)T (Ae)

= ‖Ax − b‖22 + ‖Ae‖22 + 2eT (ATAx − ATb)

= ‖Ax − b‖22 + ‖Ae‖22 ≥ ‖Ax − b‖22
This implies ‖Ax − b‖2 to be minimal. For the converse, observe that if
ATAx , ATb then there is a vector e such that eT (ATAx − ATb) > 0.
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Solution of overdetermined systems (cont.)

(b) Write

U = {ATAx | x ∈ Rn} and V = U⊥ = {v | vTu = 0 for all u ∈ U}.

By definition,
0 = vTATAv = ‖Av‖22

for any v ∈ V , hence Av = 0.
Thus, for any v ∈ V ,

(ATb)Tv = bTAv = 0,

which implies ATb ∈ V⊥.
A nontrivial fact of finite dimensional vector spaces is

V⊥ = U⊥⊥ = U.

Therefore ATb ∈ U, which shows the existence in (b).
The uniqueness follows from the observation if the columns of A are linearly
independent then ‖Ae‖2 = 0 implies Ae = 0 and e = 0. �
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Example: Line fitting

Write the line fitting problem (5) as Ax = b with

A =

1 1
4 1
5 1

 , x =

[
m
b

]
, b =

23
7

 .
Then

ATA =

[
42 10
10 3

]
, ATb =

[
49
12

]
.

The solution of

42m + 10b = 49

10m + 3b = 12

is m = 27/26 ≈ 1.0385 and b = 7/13 ≈ 0.5385. Hence, the equation of the
fitting line is

y = 1.0385 x + 0.5385.
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Solution of underdetermined systems

Theorem

(a) If AATz = b and x = ATz then x is the unique solution for the
underdetermined problem

minimize ‖x‖2 such that Ax = b.

(b) The system AATz = b has always a solution.

Proof. (a) Assume AATz = b and x = ATz. Let y be such that Ay = b and write
e = y − x. We have

A(x + e) = Ax = b⇒ Ae = 0⇒ xTe = (ATz)Te = zT (Ae) = 0.

Then,

‖x + e‖22 = (x + e)T (x + e) = xTx + 2xTe + eTe = ‖x‖22 + ‖e‖22,

which implies ‖y‖2 ≥ ‖x‖2 and equality holds if and only if y − x = e = 0.
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Solution of underdetermined systems (cont.)

(b) Write

U = {AATz | z ∈ Rn} and V = U⊥ = {v | vTu = 0 for all u ∈ U}.

By definition,
0 = vTAATv = ‖ATv‖22

for any v ∈ V , hence ATv = 0. As the system is underdetermined, there is a
vector x0 such that Ax0 = b. Hence, for any v ∈ V

bTv = (Ax0)Tv = xT
0 (ATv) = 0.

This means b ∈ V⊥ = U⊥⊥ = U, that is, b = AATz for some vector z. �
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Example: Closest point on a line

We want to minimize
√

x2 + y2 for the points of the line 5x − 3y = 15. Then

A =
[
5 −3

]
, x =

[
x
y

]
, b =

[
15

]
.

Moreover, AAT = [34] and the solution of AATz = b is z = 15/34. Thus, the
optimum is [

x
y

]
= ATz =

[
5
−3

]
·

15
34
≈

[
2.2059
−1.3235

]
.
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Implementation and numerical stability questions

The theorems above are important theoretical results for the solution of
under- and overdetermined systems.

In the practical applications, there are two larger problems.
(1) Both methods require the solution of systems (ATAx = ATb and
AATz = b) which are well-determined but still may be singular.

Many linear solvers have problems in dealing with such systems.

(2) The numerical values in AAT and ATA have typically double length
compared to the values in A.

This may cause numerical instability.
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Subsection 2

The QR decomposition
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Orthogonal vectors, orthogonal matrices

We say that
1 the vectors u, v are orthogonal, if their scalar product uTv = 0.
2 the vector v is normed to 1, if its 2-norm is 1: ‖v‖22 = vTv = 1.
3 the vectors v1, . . . , vk are orthogonal, if they are pairwise orthogonal.
4 the vectors v1, . . . , vk form an orthonormal system if they are pairwise

orthogonal and normed to 1.
5 the n × n matrix A is orthogonal, if ATA = AAT = I, where I is the n × n

unit matrix.
Examples:

The vectors [1,−1, 0], [1, 1, 1] and [−3,−3, 6] are orthogonal.
For any ϕ ∈ R, the matrix [

cosϕ − sinϕ
sinϕ cosϕ

]
is orthogonal.
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Properties of orthogonal matrices

If ai denotes the ith column of A, then
the (i, j)-entry of ATA is the scalar product aT

i aj.
If bj denotes the jth row of A, then

the (i, j)-entry of AAT is the scalar product bibT
j .

Proposition: Rows and columns of orthogonal matrices
For an n × n matrix A the following are equivalent:

1 A is orthogonal.
2 The columns of A form an orthonormal system.
3 The rows of A form an orthonormal system.

Proposition: Orthogonal matrices preserve scalar product and 2-norm

Let Q be an orthogonal matrix. Then (Qu)T (Qv) = uTv and ‖Qu‖2 = ‖u‖2.

Proof. (Qu)T (Qv) = uTQTQv = uT Iv = uTv. �
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Row echelon form

The leading entry of a nonzero (row or column) vector is its first nonzero
element.

We say that the matrix A = (aij) is in row echelon form if the leading
entry of a nonzero row is always strictly to the right of the leading
entry of the row above it.
Example: 

1 a12 a13 a14 a15
0 0 2 a24 a25
0 0 0 −1 a35
0 0 0 0 0


In row echelon form, the last rows of the matrix may be all-zeros.

Using Gaussian elimination, any matrix can be transformed into row
echelon form by elementary row operations.

Similarly, we can speak of matrices in column echelon form.
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Overdetermined systems in row echelon form

1 Let A be an m × n matrix in row echelon form such that the last m − k
rows are all-zero and consider the system

a11 a12 a13 · · · a1` · · · a1n

0 0 a22 · · · a2` · · · a2n
...

...
...

0 0 0 · · · ak` · · · akn

0 0 0 · · · 0 · · · 0
...

...
...

0 0 0 · · · 0 · · · 0





x1
...

x`
...

xn


=



b1
b2
...

bk

bk+1
...

bm


of m equations in n variables.

2 As the leading entries in the first k rows are nonzero, there are values
x1, . . . , xn such that the first k equations hold.

3 However, by any choice of the variables, the error in equations
k + 1, . . . ,m is bk+1, . . . , bm.

4 The minimum of ‖Ax − b‖2 is
√

b2
k+1 + . . . + b2
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The QR decomposition

Definition
We say that A = QR is a QR decomposition of A, if A is an m × n matrix, Q is
an m × m orthogonal matrix and R is an m × n matrix in row echelon form.

We will partly prove the following important result later.

Theorem: Existence of QR decompositions
Any real matrix A has a QR decomposition A = QR. If A is nonsingular then
Q is unique up to the signs of its columns.

Example: Let A =

[
a11 a12
a21 a22

]
and assume that the first column is nonzero.

Define c =
a11√

a2
11+a2

21

, s =
a21√

a2
11+a2

21

. Then A = QR is a QR decomposition with

Q =

[
c −s
s c

]
, R =


√

a2
11 + a2

21
a11a12+a21a22√

a2
11+a2

21

0 a11a22−a12a21√
a2

11+a2
21

 .
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Solving overdetermined systems with QR decomposition

We can solve the underdetermined system

minimize ‖Ax − b‖2

in the following way.
1 Let A = QR be a QR-decomposition of A.
2 Put c = QTb.
3 Using the fact that the orthogonal matrix QT preserves the 2-norm, we

have

‖Ax − b‖2 = ‖QRx − b‖2 = ‖QTQRx − QTb‖2 = ‖Rx − c‖2.

4 Since R has row echelon form, the underdetermined system

minimize ‖Rx − c‖2

can be solved in an obvious manner as explained before.
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QR decomposition and orthogonalization

Let A be a nonsingular matrix and A = QR its QR decomposition.
Let a1, . . . , an be the column vectors of A, q1, . . . , qn the column vectors
of Q and R = (cij) upper triangular.

[
a1 a2 · · · an

]
=

[
q1 q2 · · · qn

] 
c11 c12 · · · c1n

0 c22 · · · c2n
...

0 0 · · · cnn


=

[
c11q1 c12q1+c22q2 · · · c1nq1+c2nq2+· · ·+cnnqn

]

Equivalently with A = QR:



a1 = c11q1

a2 = c12q1 + c22q2

...

an = c1nq1 + c2nq2 + · · · + cnnqn

(8)
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QR decomposition and orthogonalization (cont.)

Since A is nonsingular, R is nonsingular and c11 · · · cnn , 0.
We can therefore „solve” (8) for the qi’s by back substitution:

q1 = d11a1

q2 = d12a1 + d22a2

...

qn = d1na1 + d2na2 + · · · + dnnan

(9)

Thus, the QR decomposition of a nonsingular matrix is equivalent with
transforming the ai’s into an orthonormal system as in (9).
Transformations as in (9) are called orthogonalizations.
The orthogonalization process consists of two steps:
(1) [hard] Transforming the ai’s into an orthogonal system.

(2) [easy] Norming the vectors to 1: q′i =
qi

‖qi‖2
.
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The orthogonal projection

For vectors u, x define the map

proju(x) =
uTx
uTu

u.

On the one hand, the vectors u and proju(x) are parallel.
On the other hand, u is perpendicular to x − proju(x):

uT (x − proju(x)) = uTx − uT
(

uTx
uTu

u
)

= uTx −
(

uTx
uTu

)
(uTu) = 0.

This means that proju(x) is the orthogonal projection of the vector x to
the 1-dimensional subspace spanned by u:

u

x

proju(x)
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The Gram-Schmidt orthogonalization

The Gram–Schmidt process works as follows. We are given the vectors
a1, . . . , an in Rn and define the vectors q1, . . . , qn recursively:

q1 = a1

q2 = a2 − projq1
(a2)

q3 = a3 − projq1
(a3) − projq2

(a3)
...

qn = an − projq1
(an) − projq2

(an) − · · · − projqn−1
(an)

(10)

On the one hand, the qi’s are orthogonal. For example, we show that q2 is
orthogonal to q5 by assuming that we have already shown q2 ⊥ q1, q3, q4.
Then, q2 ⊥ projq1

(a5), projq3
(a5), projq4

(a5) too, since these are scalar
multiples of the respective qi’s.
As before, we have q2 ⊥ a5 − projq2

(a5). Therefore,

q2 ⊥ a5 − projq1
(a5) − projq2

(a5) − projq3
(a5) − projq4

(a5) = q5.
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The Gram-Schmidt orthogonalization (cont.)

On the other hand, we have to make clear that any ai is a linear
combination of q1, q2, . . . , qi as required in (8).

Notice that (10) implies

ai = projq1
(ai) + projq2

(ai) + · · · + projqi−1
(ai) + qi

= c1iq1 + c2iq2 + · · · + ci−1,iqi−1 + qi. (11)

The coefficients cij = (qT
i aj)/(qT

i qi) are well defined if and only if qi , 0.

However, qi , 0 means that a1, a2, . . . , ai are linearly dependent,
contradicting the fact that A is nonsingular.

This proves that (10) indeed results an orthogonalization of the system
a1, a2, . . . , an.
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The Gram-Schmidt process

1 Initialization: Copy all ai’s to the qi’s.
2 Step 1: Finalize q1 and subtract projq1

(a2), projq1
(a3), . . . from q2, q3, . . ..

3 Step 2: Finalize q2 and subtract projq2
(a3), projq2

(a4), . . . from q3, q4, . . ..
4 and so on...
5 Step n: Finalize qn−1 and substract projqn−1

(an) from qn.
6 Last step: Finalize qn and quit.

q1 ← a1

q2 ← a2 − projq1
(a2)

q3 ← a3 − projq1
(a3) − projq2

(a3)
...

qn ← an − projq1
(an) − projq2

(an) − · · · − projqn−1
(an)
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Demostration of the Gram-Schmidt process: The
orthogonalization

A =


4.000 2.000 -5.000 -9.000
1.000 -7.000 -5.000 -6.000
6.000 -3.000 -6.000 -9.000
7.000 9.000 0.000 8.000


Q =


4.000 2.000 -5.000 -9.000
1.000 -7.000 -5.000 -6.000
6.000 -3.000 -6.000 -9.000
7.000 9.000 0.000 8.000


R =


1.000 0.451 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000
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Demonstration of the Gram-Schmidt process: The
normalization

QTQ =


102.000 0.000 0.000 0.000
0.000 122.255 0.000 0.000
0.000 0.000 8.853 0.000
0.000 0.000 0.000 19.974


Qnormed =


0.396 0.018 -0.914 -0.081
0.099 -0.674 -0.035 0.731
0.594 -0.516 0.295 0.542
0.693 0.528 0.274 0.406


Rnormed =


10.100 4.555 -6.040 -3.961
0.000 11.057 6.377 12.756
0.000 0.000 2.975 7.977
0.000 0.000 0.000 4.469
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Implementation of the Gram-Schmidt process

Arguments for:
After the kth step we have the first k elements of orthogonal system.

It works for singular and/or nonsquare matrices as well.

However, one must deal with the case when one of the qi’s is zero.

Then, one defines proj0(x) = 0 for all x.

Arguments against:
Numerically unstable, slight modifications are needed.

Other orthogonalization algorithms use Householder transformations or
Givens rotations.
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Section 4

The Eigenvalue Problem
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The Eigenvalue Problem Introduction

Eigenvalues, eigenvectors

Definition: Eigenvalue, eigenvector

Let A be a complex N × N square matrix. The pair (λ, v) (λ ∈ C, v ∈ CN) is
called an eigenvalue, eigenvector pair of A if λv = Av and v , 0.

Example

The pair λ = 2 and v = [4,−1]T is an eigenvalue, eigenvector pair of the
matrix

A =

[
3 4
0 2

]
,

since

2
[

4
−1

]
=

[
3 4
0 2

]
·

[
4
−1

]
.
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The Eigenvalue Problem Introduction

Motivation

Finding the eigenvalues of matrices is very important in numerous
applications.

Applications
1 Solving the Schrödinger equation

in quantum mechanics
2 Molecular orbitals can be defined

by the eigenvectors of the Fock
operator

3 Geology - study of glacial till
4 Principal components analysis
5 Vibration analysis of mechanical

structures (with many degrees of
freedom)

6 Image processing

Tacoma Narrows Bridge

Image source: http://www.answers.com/topic/

galloping-gertie-large-image
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The Eigenvalue Problem Introduction

Characteristic polynomial

Proposition
λ is an eigenvalue of A if, and only if, det(A − λIN) = 0, where IN is the
identity matrix of size N.

Proof. We observe that λv = Av⇔ (A − λI)v = 0. The latter system of linear
equations is homogenius, and has a non-trivial solution if, and only if, it is
singular. �

Definition
The Nth-degree polynomial p(λ) = det(A − λI) is called the characteristic
polynomial of A.
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The Eigenvalue Problem Introduction

Characteristic polynomial

Example
Consider the matrix

A =

 2 4 −1
0 1 1
0 0 1

 .
The characteristic polynomial of A is

det(A − λI) = det

 2 − λ 4 −1
0 1 − λ 1
0 0 1 − λ

 =

= (2 − λ)(1 − λ)2 = −λ3 + 4λ2 − 5λ + 2.

The problem of finding the eigenvalues of an N × N matrix is equivalent to
solving a polynomial equation of degree N.
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Example
Consider the matrix

B =



−α1 −α2 · · · −αN−1 −αN

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


.

An inductive argument shows that the characteristic polynomial of B is
p(λ) = (−1)N · (λN + α1λ

N−1 + α2λ
N−2 + ... + αN−1λ + αN).

The above example shows, that every polynomial is the characteristic
polynomial of some matrix.
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The Abel-Ruffini theorem

Abel-Ruffini theorem
There is no general algebraic solution – that is, solution in radicals – to
polynomial equations of degree five or higher.

This theorem together with the previous example shows us, that we cannot
hope for an exact solution for the eigenvalue problem in general, if N > 4.

Thus, we are interested - as usual - in iterative methods, that produce
approximate solutions, and also we might be interested in solving special
cases.
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Subsection 2

The Jacobi Method
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The Eigenvalue Problem The Jacobi Method

Symmetric matrices

First, we are going to present an algorithm, that iteratively approximates the
eigenvalues of a real symmetric matrix.

Proposition
If A is a real symmetric matrix, then all eigenvalues of A are real numbers.

Proposition
If A is positive-definite, then all eigenvalues of A are positive real numbers. If
A is positive-semidefinite, then all eigenvalues of A are nonnegative real
numbers.

123 / 262
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The idea of Jacobi

First we note that the eigenvalues of a diagonal (even upper triangular) matrix
are exactly the diagonal elements.

Thus the idea is to transform the matrix (in many steps) into (an almost)
diagonal form without changing the eigenvalues.



a11 ∗ ∗ . . . ∗

∗ a22 ∗ . . . ∗

∗ ∗ a33 . . . ∗
...

...
...

. . .
...

∗ ∗ ∗ . . . aNN


e.p.t.
{



λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λN
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Eigenvalues and similarities

Proposition
Let A and X be N × N matrices, and assume det X , 0. λ is an eigenvalue of A
if, and only if, λ is an eigenvalue of X−1AX.

Proof. Observe, that

det(X−1AX − λI) = det(X−1(A − λI)X) = det X−1 det(A − λI) det X.

Thus, det(A − λI) = 0⇔ det(X−1AX − λI) = 0. �

Corollary
Let A and X be N × N matrices, and assume that A is symmetric and X is
orthogonal. λ is an eigenvalue of A if, and only if, λ is an eigenvalue of the
symmetric matrix XTAX.
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Rotation matrices

We introduce Givens rotation matrices as follows.

Qij =



1
1

1
c −s

1
1

s c
1

1
1


Here c2 + s2 = 1, and [Qij]ii = c, [Qij]jj = c, [Qij]ij = −s, [Qij]ji = s, all other
diagonal elements are 1, and we have zeros everywhere else.
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Rotation matrices

Proposition
Qij is orthogonal.

We would like to achieve a diagonal form by succesively transforming the
original matrix A via Givens rotations matrices. With the proper choice of c
and s we can zero out symmetric pairs of non-diagonal elements.

Example
Let i = 1, j = 3, c = 0.973249 and s = 0.229753. Then

QT
ij ·


1 2 −1 1
2 1 0 5
−1 0 5 3
1 5 3 2

 · Qij =


0.764 1.946 0 1.663
1.946 1 −0.460 5

0 −0.460 5.236 2.690
1.663 5 2.690 2
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Creating zeros

A tedious, but straightforward calculation gives the following, general lemma.

Lemma

Let A be a symmetric matrix, and assume aij = aji , 0. Let B = QT
ijAQij. Then

B is a symmetric matrix with

bii = c2aii + s2ajj + 2scaij,

bjj = s2aii + c2ajj − 2scaij,

bij = bji = cs(ajj − aii) + (c2 − s2)aji.

In particular, if

c =

(
1
2

+
β

2 · (1 + β2)1/2

)1/2

; s =

(
1
2
−

β

2 · (1 + β2)1/2

)1/2

with 2β = (aii − ajj)/aij, then bij = bji = 0.
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Approching a diagonal matrix

With the help of the previous lemma we can zero out any non-diagonal
element with just one conjugation. The problem is, that while creating new
zeros, we might ruin some previously done work, as it was shown in the
example.
Thus, instead of reaching a diagonal form, we try to minimize the sum of
squares of the non-diagonal elements. The following theorem makes this idea
precise.

Definition
Let X be a symmetric matrix. We introduce

sqsum(X) =

N∑
i,j=1

x2
ij; diagsqsum(X) =

N∑
i=1

x2
ii

for the sum of squares of all elements, and for the sum of squares of the
diagonal elements, respectively.
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Main theorem

Theorem
Assume that the symmetric matrix A has been transformed into the symmetric
matrix B = QT

ijAQij such that bij = bji = 0. Then the sum of squares of all
elements remains unchanged, while the sum of squares of the diagonal
elements increases. More precisely

sqsum(A) = sqsum(B); diagsqsum(B) = diagsqsum(A) + 2a2
ij.

Proof. Using c2 + s2 = 1, from the previous lemma we may deduce by
straigthforward calculation the following identity:

b2
ii + b2

jj + 2b2
ij = a2

ii + a2
jj + 2a2

ij.

Since we assumed bij = 0, and obviously bkk = akk if k , i, j, it follows that
diagsqsum(B) = diagsqsum(A) + 2a2

ij.
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Proof of Main Theorem

Introduce P = AQij, and denote the kth column of A by ak, and the kth column
of P by pk. We claim that sqsum(P) = sqsum(A).

Observe, that pi = cai + saj, pj = −sai + caj, while pk = ak if k , i, j. Thus

‖pi‖
2
2 + ‖pj‖

2
2 = pT

i pi + pT
j pj = c2aT

i ai + 2csaT
i aj + s2aT

j aj

+ s2aT
i ai − 2csaT

i aj + c2aT
j aj = aT

i ai + aT
j aj = ‖ai‖

2
2 + ‖aj‖

2
2

and hence

sqsum(P) =

N∑
k=1

‖pk‖
2
2 =

N∑
k=1

‖ak‖
2
2 = sqsum(A).

We may show similarly, that sqsum(P) = sqsum(QT
ijP), which implies

sqsum(A) = sqsum(B). �
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One Jacobi iteration

We knock out non-diagonal elements iteratively conjugating with Givens
rotation matrices. To perform one Jacobi iteration first we need to pick an aij

we would like to knock out, then calculate the values of c and s (see Lemma),
finally perform the calculation QT

ijAQij. Since only the ith and jth rows and
columns of A change actually, one iteration needs only O(N) time.

We need to find a strategy to pick aij effectively.

If we systematically knock out every non-zero element in some
prescribed order until each non-diagonal element is small, we may spend
much time with knocking out already small elements.

It seems feasible to find the largest non-diagonal element to knock out,
however it takes O(N2) time.
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Strategy to pick aij

Instead of these, we choose a strategy somewhere in between: we check all
non-diagonal elements in a prescribed cyclic order, zeroing every element that
is „larger than half-average”. More precisely, we knock out an element aij if

a2
ij >

sqsum(A) − diagsqsum(A)
2N(N − 1)

.

Theorem
If in the Jacobi method we follow the strategy above, then the convergence
criterion

sqsum(A) − diagsqsum(A) ≤ ε · sqsum(A)

will be satisfied after at most N2 ln(1/ε) iterations.
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Speed of convergence

Proof. Denote sqsum(A) − diagsqsum(A) after k iterations by ek. By the Main
Theorem and by the strategy it follows that

ek+1 = ek − 2a2
ij ≤ ek −

ek

N(N − 1)
< ek

(
1 −

1
N2

)
≤ ek exp

(
−1
N2

)
.

Thus after L = N2 ln(1/ε) iterations

eL ≤ e0

[
exp

(
−1
N2

)]L

≤ e0 exp
[
− ln

(
1
ε

)]
= e0ε.

Since sqsum(A) remains unchanged, the statement of the Theorem readily
follows. �

134 / 262



The Eigenvalue Problem The Jacobi Method

Demonstration via example

We start with the matrix

Example

A = A0 =


1 5∗ −1 1
5 1 0 2
−1 0 5 3
1 2 3 2


and show the effect of a couple of iterations.

Before we start the Jacobi method we have sqsum(A) = 111 and
diagsqsum(A) = 31. Thus the critical value is (111 − 31)/24 = 3.33. We
prescribe the natural order on the upper triangle, so we choose i = 1 and j = 2
(see starred element). We use 3 digits accuracy during the calculation.
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Demonstration via example

After one iteration

A1 =


−4 0 −0.707 −0.707
0 6 −0.707 2.121∗

−0.707 −0.707 5 3
−0.707 2.121 3 2


sqsum(A1) = 111

diagsqsum(A1) = 81

critical value 1.250

For the next iteration we pick i = 2 and j = 4 (see starred element).
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Demonstration via example

After two iterations

A2 =


−4 −0.28 −0.707 −0.649
−0.28 6.915 0.539 0
−0.707 0.539 5 3.035∗
−0.649 0 3.035 1.085


sqsum(A1) = 111

diagsqsum(A1) = 90

critical value 0.875

For the next iteration we pick i = 3 and j = 4 (see starred element).
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Demonstration via example

After three iterations

A3 =


−4 −0.28 −0.931∗ −0.232
−0.28 6.915 0.473 −0.258
−0.931 0.473 6.654 0
−0.232 −0.258 0 −0.569


sqsum(A1) = 111

diagsqsum(A1) = 108, 416

critical value 0.107

For the next iteration we pick i = 1 and j = 3 (see starred element).
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Demonstration via example

After four iterations

A4 =


−4.081 −0.238 0 −0.231∗
−0.238 6.915 0.495 −0.258

0 0.495 6.735 0.02
−0.231 −0.258 0.02 −0.569


sqsum(A1) = 111

diagsqsum(A1) = 110, 155

critical value 0.035

For the next iteration we pick i = 1 and j = 4 (see starred element).
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Demonstration via example

After five iterations

A5 =


−4.096 −0.254 0, 001 0
−0.254 6.915 0.495∗ −0.242
0.001 0.495 6.735 0.02

0 −0.242 0.02 −0.554


sqsum(A1) = 111

diagsqsum(A1) = 110, 262

critical value 0.031

For the next iteration we pick i = 2 and j = 3 (see starred element).
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Demonstration via example

After six iterations

A6 =


−4.096 −0.194 0, 164 0
−0.194 7, 328 0 −0.173∗
0.164 0 6.322 0.17

0 −0.173 0.17 −0.554


sqsum(A1) = 111

diagsqsum(A1) = 110, 751

critical value 0.010

For the next iteration we would pick i = 2 and j = 4 (see starred element). We
stop here. The eigenvalues of the original matrix A are λ1 = −4.102,
λ2 = 7.336, λ3 = 6.322 and λ4 = −0.562. Thus our estimation is already 0.01
exact.
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The Jacobi method

We summarize the Jacobi method. We assume that ε > 0 and a symmetric
matrix A = A0 are given.

1 Initialization We compute sqsum(A) and dss = diagsqsum(A), and set
k = 0. Then repeat the following steps until

sqsum(A) − dss ≤ ε · sqsum(A).

2 Consider the elements of Ak above its diagonal in the natural cyclical
order and find the next aij with a2

ij >
sqsum(A)−diagsqsum(Ak)

2N(N−1) .

3 Compute c and s according to the lemma, and construct Qij. Compute
Ak+1 = QT

ijAkQij.

4 Put dss = dss + 2a2
ij(= diagsqsum(Ak+1)), k = k + 1, and repeat the cycle.

When the algorithm stops, Ak is almost diagonal, and the eigenvalues of A are
listed in the main diagonal.
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Subsection 3

QR method for general matrices
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General matrices

The Jacobi method works only for real symmetric matrices. We cannot hope
to modify or fix it, since obviously the main trick always produces real
numbers into the diagonal, while a general real matrix can have complex
eigenvalues.

We sketch an algorithm that effectively finds good approximations of the
eigenvalues of general matrices. We apply an itaretive method that is based on
the QR decomposition of the matrices. It turns out, that this method converges
pretty slowly for general matrices, and to perform one iteration step, we need
O(N3) time. However, if we apply the method for upper Hessenberg matrices,
then one iteration takes only O(N2), and the upper Hessenberg structure is
preserved.
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Review: the QR decomposition

QR decomposition
Let A be a real square matrix. Then there is a Q orthogonal matrix and there is
an R matrix in row echelon form such that A = QR.

Example  1 2 0
0 1 1
1 0 1

 =


1√
2

1√
3

−1√
6

0 1√
3

2√
6

1√
2

−1√
3

1√
6

 ·

√

2
√

2 1√
2

0
√

3 0
0 0

√
6

2


As we saw earlier, the QR decomposition of a matrix can be calculated via the
Gram-Schmidt process in O(N3) steps.
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The QR method

We start with a square matrix A = A0. Our goal is to transform A into upper
triangular from without changing the eigenvalues.

The QR method
1 Set k = 0.
2 Consider Ak, and compute its QR decompostion Ak = QkRk.
3 We define Ak+1 = RkQk.
4 Put k = k + 1, and go back to Step 2.

Note that for any k we have Q−1
k = QT

k since Qk is orthogonal, and so
Rk = QT

k Ak. Hence Ak+1 = RkQk = QT
k AkQk, which shows that Ak and Ak+1

have the same eigenvalues.
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The QR method

Theorem
Assume that A has N eigenvalues satisfying

|λ1| > |λ2| > . . . > |λN | > 0.

Then Ak defined above approaches upper triangular form.

Thus, after a finite number of iterations we get a good approximations of the
eigenvalues of the original matrix A. The following, more precise statement
shows the speed of the conergence.

Theorem

We use the notation above, and let a(k)
ij be the jth element in the ith row of Ak.

For i > j

|a(k)
ij | = O

∣∣∣∣∣∣λi

λj

∣∣∣∣∣∣k
 .

147 / 262



The Eigenvalue Problem QR method for general matrices

Demonstartion of the QR method

We demonstrate the speed of the convergence through numerical examples.
(Source:
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter3.pdf)

Initial value

A = A0 =


−0.445 4.906 −0.879 6.304
−6.394 13.354 1.667 11.945
3.684 −6.662 −0.06 −7.004
3.121 −5.205 −1.413 −2.848


The eigenvalues of the matrix A are approximately 1, 2, 3 and 4.
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Demonstartion of the QR method

After 5 iterations we obtain the following.

After 5 iterations

A5 =


4.076 0.529 −6.013 −22.323
−0.054 2.904 1.338 −2.536
0.018 0.077 1.883 3.248
0.001 0.003 0.037 1.137


[The eigenvalues of the matrix A and A5 are approximately 1, 2, 3 and 4.]
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Demonstartion of the QR method

After 10 iterations we obtain the following.

After 10 iterations

A10 =


4.002 0.088 −7.002 −21.931
−0.007 2.990 0.937 3.087
0.001 0.011 2.002 3.618
0.000 0.000 −0.001 1.137


[The eigenvalues of the matrix A and A10 are approximately 1, 2, 3 and 4.]
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Demonstartion of the QR method

After 20 iterations we obtain the following.

After 20 iterations

A20 =


4.000 0.021 −7.043 −21.898
0.000 3.000 0.873 3.202
0.000 0.000 2.000 −3.642
0.000 0.000 0.000 1.000


[The eigenvalues of the matrix A and A20 are approximately 1, 2, 3 and 4.]
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On the QR method

Remarks on the QR method:
The convergence of the algorith can be very slow, if the eigenvalues are
very close to each other.
The algorithm is expensive. Each iteration step requires O(N3) time as
we showed earlier.

Both issues can be improved. We only sketch a method that reduces the
running time of one iteration step. We recall the following definition.

Definition: Upper (lower) Hessenberg matrix
The matrix A is upper (lower) Hessenberg if aij = 0 when i − 1 > j (i < j − 1).
A 4 × 4 example of an upper Hessenberg matrix is

A =


1 2 5 9
−1 5 2 −1
0 3 −2 3
0 0 1 7
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Upper Hessenberg matrices

Proposition
Let A be an upper Hessenberg matrix. To perform one iteration of the QR
method on A takes O(N2) time.

Lemma
Let A be an upper Hessenberg matrix with QR decomposition A = QR. Then
the matrix RQ is also upper Hessenberg.

These two statements ensure that if we start with a matrix A that is in upper
Hessenberg form, the QR method can be applied much more effectively.

Similarly, as in the Jacobi method, using Givens rotation matrices, we can
transform an arbitrary matrix A into upper Hessenberg form. The algorithm is
called Householder reduction, and it has running time O(N3). (We do not
cover this method in details.)
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Summary

The extended QR method to find the eigenvalues of a general square matrix A
goes as follows.

Extended QR method
1 We transform A into upper Hessenberg form using Householder

reduction in O(N3) steps.
2 We iterate Ak+1 = RkQk until the desired accuracy is reached. Every

iteration step requires O(N2) time.

Ak approaches an upper triangular form, the eigenvalues of the original matrix
A will appear in the main diagonal.

Remark. The speed of the convergence in the QR method can be greatly
improved by introducing spectral shifts in the algorithm.
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Section 5

A sparse iterative model: Poisson’s Equation
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Subsection 1

The Jacobi Iteration
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Sparse matrices

A sparse matrix can be vaguely defined as a matrix with few nonzeros. It
is important to take advantage of the sparsity.

Sparsity can be structured or unstructured.

The fraction of zero elements (resp. non-zero elements) in a matrix is
called the sparsity (resp. density).

An important special type of sparse matrices is that of band matrices.

The concept of sparsity is useful in combinatorics and application areas
such as network theory, which have a low density of significant data or
connections.

Huge sparse matrices often appear in science or engineering when
solving partial differential equations.
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Basic idea of the iterative method

We want to solve the system
Ax = b (12)

of linear equations. We split A in two parts, B and A − B, and write (12) in the
form

Bx = (B − A)x + b. (13)

Now we define an iterative method based on this formula:

Bxn+1 = (B − A)xn + b. (14)

1 It is clear that we must choose B so that we can easily solve (13).
2 Typically, one chooses B diagonal or triangular.
3 If xn converges to to a vector x∞ then x∞ satisfies (13), and thus will be a

solution for Ax = b.
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Convergence of the iterative method

To determine when the iteration (14) will converge, we subtract (14) from
(13) and get

Ben+1 = (B − A)en,

where en = x − xn is the error after n iteration. Then

en+1 = (I − B−1A)en = (I − B−1A)n+1e0. (15)

Theorem: Convergence of the iterative method
If A and B are both nonsingular, and the initial guess x0 is not exactly equal to
the solution x of Ax = b, and if Bxn+1 = (B − A)xn + b, then xn converges to x
if and only if all eigenvalues of I − B−1A are less than 1 in absolute value.

The proof relies on the following

Proposition
Hn → 0 as n→ ∞ if and only if all eigenvalues of H are < 1 in absolute value.
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The simplest choice for B: The Jacobi iteration

One obvious choice for B is the diagonal matrix consisting of the
elements of the diagonal of A.

This choice defines the Jacobi iteration

Dxn+1 = (D − A)xn + b,

or

(xi)n+1 =
1
aii

bi −
∑
i,j

aij(xj)n

 , i = 1, . . . ,N. (16)

In practice, either we give estimates on the true eigenvalues of I − D−1A,
or,

we apply more general results giving such bounds.
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Convergence for diagonal-dominant matrices

Theorem: Diagonal-dominant matrices
If A is diagonal-dominant, that is, if for each i

|aii| >
∑
j,i

|aij|,

then the Jacobi iteration (16) will converge.

Proof. The ith row of H = I − D−1A has the form

[−ai1/aii · · · − ai,i−1/aii 0 − ai,i+1/aii · · · − aiN/aii];

the sum of the absolute values of the elements is less than. Hence, the∞-norm
of H is less than 1. If z is an eigenvector of H with eigenvalue λ then

|λ| ‖z‖∞ = ‖λz‖∞ = ‖Hz‖∞ ≤ ‖H‖∞‖z‖∞.

Since the eigenvector z , 0, we see that |λ| ≤ ‖H‖∞ < 1 holds for all
eigenvalues of H. The convergence follows from the appropriate theorem. �
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Subsection 2

Poisson’s Equation in one dimension
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Poisson’s equation in one dimension

We begin with a one-dimensional version of Poisson’s equation:

−
d2v(x)

dx2 = f (x), 0 < x < 1, (17)

where f (x) is a given function and v(x) is the unknown function that we want
to compute. v(x) must also satisfy the boundary conditions v(0) = v(1) = 0.

Proposition: Properties of − d2

dx2

Let C0 be the space of analytic functions on [0, 1] satisfying the boundary
condition. The eigenvalues of the linear operator − d2

dx2 on C0 are λ̂i = i2π2

with corresponding eigenvectors ẑi = sin(iπx).

Proof. It is easy to see that for a fixed scalar k, the solutions of the differential
equation − d2u

dx2 = ku have the form u(x) = α sin(
√

kx) + β cos(
√

kx). u(0) = 0
implies β = 0 and u(1) = 0 implies

√
k = iπ for an integer i. �
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Discretization of Poisson’s equation

1 We compute an approximate solution at N + 2 evenly spaced points xi

between 0 and 1: xi = ih, where h = 1
N+1 and 0 ≤ i ≤ N + 1.

2 We abbreviate vi = v(xi) and fi = f (xi).
3 To convert (17) into a linear equation for the unknowns v1, . . . , vN , we

use finite differences

dv(x)
dx

∣∣∣∣∣
x=(i−1/2)h

≈
vi − vi−1

h
,

dv(x)
dx

∣∣∣∣∣
x=(i+1/2)h

≈
vi+1 − vi

h
.

4 Subtracting these approximations and dividing by h yield the centered
difference approximation

−
d2v(x)

dx2

∣∣∣∣∣∣
x=xi

≈
2vi − vi−1 − vi+1

h2 . (18)
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Linear form of the discrete Poisson’s equation

1 From now on we will not distinguish between v and its approximation
(v0, . . . , vN+1). The truncation error can be shown to be O(h2 · ‖ d4v

dx4 ‖∞).
2 We may rewrite (18) at x = xi as

−vi−1 + 2vi − vi+1 = h2fi,

where 0 < i < N + 1.
3 Since the boundary conditions imply v0 = vN+1 = 0, we have N

equations in N unknowns v1, . . . , vN :

TN ·


v1
...
...

vN

 =


2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2

 ·

v1
...
...

vN

 = h2


f1
...
...

fN

 (19)
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Eigenvalues and eigenvectors of TN

The coefficient matrix TN plays a central role in all that follows.

Lemma: Eigenvalues and eigenvectors of TN

(a) The eigenvalues of TN are λj = 2
(
1 − cos jπ

N+1

)
. (b) The eigenvectors are zj,

where zj(k) =

√
2

N+1 sin(jkπ/(N + 1)). (c) zj has unit 2-norm.

Proof. We use the trigonometric identity sin(α+ β) + sin(α− β) = 2 sinα cos β:

sin
(
j(k − 1)π

N − 1

)
+ sin

(
j(k + 1)π

N − 1

)
= 2 sin

(
jkπ

N − 1

)
cos

(
jπ

N − 1

)
,

which implies

(TNzj)(k) = − sin
(
j(k − 1)π

N − 1

)
+ 2 sin

(
jkπ

N − 1

)
− sin

(
j(k + 1)π

N − 1

)
=

(
2 − 2 cos

jπ
N + 1

)
sin

(
jkπ

N − 1

)
= λjzj(k).

This proves (a) and (b). 166 / 262
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Eigenvalues and eigenvectors of TN (cont.)

By cos(α + β) − cos(α − β) = 2 cosα cos β:

2

N+1∑
k=0

cos
2jkπ

N + 1

 cos
jπ

N + 1
=

N+1∑
k=0

(
cos

(2k + 1)jπ
N + 1

− cos
(2k − 1)jπ

N + 1

)
= cos

(2(N + 1) + 1)jπ
N + 1

− cos
−jπ

N + 1
= 0.

Thus,

0 =

N+1∑
k=0

cos
2jkπ

N + 1
=

N+1∑
k=0

(
1 − 2 sin2 jkπ

N + 1

)
= N + 1 − 2

N+1∑
k=0

sin2 jkπ
N + 1

.

This shows ‖zj‖2 = 1. �
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A sparse iterative model: Poisson’s Equation Poisson’s Equation in one dimension

Eigenvectors of TN with N = 21
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A sparse iterative model: Poisson’s Equation Poisson’s Equation in one dimension

Eigenvalues and eigenvectors of − d2

dx2

The eigenvector

zj(k) =

√
2

N + 1
sin(jkπ/(N + 1)),

is precisely equal to the eigenfunction ẑi(x) evaluated at the sample

points xj = jh, when scaled by
√

2
N+1 .

When i is small compared to N, λ̂i = i2π2 is well approximated by

h−2λi = (N + 1)2 · 2
(
1 − cos

iπ
N + 1

)
= i2π2 + O((N + 1)−2).

Here,

λi = 2
(
1 − cos

jπ
N + 1

)
, i = 1, . . . ,N

are the eigenvalues of TN .
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Poisson’s equations and the Jacobi iteration

Let Z = [z1, . . . , zN] be the orthogonal matrix whose columns are the
eigenvectors of TN .
With Λ = diag(λ1, . . . , λN) we can write TN = ZΛZT .
The smallest and the largest eigenvalues of TN are

λ1 = 2
(
1 − cos

π

N + 1

)
≈

π2

(N + 1)2 ,

λN = 2
(
1 − cos

Nπ
N + 1

)
≈ 4 −

π2

(N + 1)2

For the eigenvalues of I − D−1TN = I − 1
2 TN yields

−1 < 1 − λi/2 < 1.

Theorem
The Jacobi iteration converges for TN .
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Subsection 3

Poisson’s Equations in higher dimensions
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

Poisson’s equations in two dimensions

Poisson’s equation in two dimensions is

−
∂2v(x, y)
∂x2 −

∂2v(x, y)
∂y2 = f (x, y) (20)

on the unit square
{(x, y) | 0 < x, y < 1},

with boundary conditions

v(x, 0) = v(x, 1) = v(0, y) = v(1, y) = 0, 0 ≤ x, y ≤ 1.

We discretize at the grid points in the square which are at

(xi, yi), with xi = ih, yj = jh, h =
1

N + 1
.
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Discretization in two dimensions

From (18) we know that we can approximate

−
∂2v(x, y)
∂x2

∣∣∣∣∣∣
x=xi,y=yj

≈
2vi,j − vi−1,j − vi+1,j

h2 ,

−
∂2v(x, y)
∂y2

∣∣∣∣∣∣
x=xi,y=yj

≈
2vi,j − vi,j−1 − vi,j+1

h2 .

Adding these approximations we have

−
∂2v(x, y)
∂x2 −

∂2v(x, y)
∂y2

∣∣∣∣∣∣
x=xi,y=yj

≈
4vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1

h2 . (21)

The truncation error is bounded by O(h2). From the boundary conditions we
know v0j = vN + 1, j = vi0 = vi,N + 1 = 0. Thus, the discretization of (20)
defines a set of n = N2 linear equations in the n unknown vij for 1 ≤ i, j ≤ N:

4vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1 = h2fij. (22)
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

Matrix equations

Think of the unknowns vij as entries of an N × N matrix V = (vij) and
similarly, the right hand sides h2fij as an T × N matrix h2F.
Notice that the ij-entries of the product matrices are

(TN · V)ij = 2vij − vi−1,j − vi+1,j,

(V · TN)ij = 2vij − vi,j−1 − vi,j+1.

By adding these two equations and using (h2F)ij = h2fij equation (22)
becomes the matrix equation

TN · V + V · TN = h2F. (23)

This is a linear system of equations for the entries of V .
Analogously to eigenvectors, we say that V is an eigenmatrix with
eigenvalue λ for the linear map V 7→ TNV + VTN , if

TNV + VTN = λV .
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Eigenvectors and eigenvalues of the 2-dimensional system

Let zi, zj be eigenvectors of TN with eigenvalues λi, λj and put V = zizT
j .

Then,

TNV + VTN = (TNzi)zT
j + zi(zT

j TN)

= (λizi)zT
j + zi(zT

j λj)

= (λi + λj)(zizT
j )

= (λi + λj)V .

So for any 1 ≤ i, j ≤ N, V = zizT
j is an eigenmatrix and λi + λj the

corresponding eigenvalue.
As the system (22) is n = N2 dimensional, we obtained all eigenvalues.
The eigenfuctions of the 2-dimensional Poisson’s equations are(

−
∂2

∂x2 −
∂2

∂y2

)
sin(iπx) sin(jπy) = (i2π2 + j2π2) sin(iπx) sin(jπy).
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

Matrix form of the matrix equations

1 In order to represent the system (22) in usual matrix form, we write the
unknowns vij in a single long N2 × 1 (column) vector v.

2 We number the entries of v columnwise from the upper left to the lower
right: v1 = v11, v2 = v21, . . . , v(i−1)N+j = vij, . . . , vN2 = vNN .

3 Let TN×N be the matrix of V 7→ TNV + VTN in this coordinate frame.
4 For example, when N = 3 we can transform (22) to get

T3×3v =



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4





v1
v2
...
...
...

v9


= h2



f1
f2
...
...
...

f9


.
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

TN×N in block matrix form

We can rewrite TN×N as a block matrix having N N × N blocks of the form
TN + 2I on its diagonal and −IN blocks on its offdiagonals:

TN×N =


TN + 2IN −IN

−IN
. . .

. . .
. . .

. . . −IN

−IN TN + 2TN

 (24)

=


TN

. . .
. . .

TN

 +


2IN −IN

−IN
. . .

. . .
. . .

. . . −IN

−IN TN

 .
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

The Kronecker product of matrices

Definition: The Kronecker product of matrices
Let A = (aij) be an m × n matrix and B a p × q matrix. Then A ⊗ B, the
Kronecker product of A and B, is the mp × nq matrix

a11 · B · · · a1n · B
...

...

am1 · B · · · amn · B

 .
Proposition: Properties of the Kronecker product

1 Assume that the product AC and BD of matrices are well defined. Then

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD).

2 If A and B are invertible then (A ⊗ B)−1 = A−1 ⊗ B−1.
3 (A ⊗ B)T = AT ⊗ BT .
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

Poisson’s equations with Kronecker products

Definition
Let X be m × n. Then vec(X) is defined to be a column vector of size mn made
of the columns of X stacked atop one another from left to right.

Lemma
1 vec(AX) = (In ⊗ A) · vec(X).
2 vec(XB) = (BT ⊗ Im) · vec(X).
3 The Poisson equation TNV + VTN = h2F is equivalent to

TN×N · vec(V) ≡ (IN ⊗ TN + TN ⊗ IN) · vec(V) = h2 · vec(F). (25)

Proof. We only prove (3). The Poisson equation is clearly equivalent to

vec(TNV + VTN) = vec(TNV) + vec(VTN) = vec(h2F).

By (1), vec(TNV) = (IN ⊗ TN) · vec(V). By (2) and the symmetry of TN ,
vec(VTN)= (TT

N ⊗ IN) vec(V)= (TN ⊗ IN) vec(V). Adding these implies (3). �
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A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

The eigendecomposition of TN×N

Theorem: The eigendecomposition of TN×N

Let TN = ZΛZT be the eigendecomposition of TN , with Z = [z1, . . . , zN] the
orthogonal matrix whose columns are eigenvectors, and Λ = diag(λ1, . . . , λN).
Then:

1 The eigendecomposition of TN×N = IN ⊗ TN + TN ⊗ IN is

I ⊗ TN + TN ⊗ I = (Z ⊗ Z) · (I ⊗ Λ + Λ ⊗ I) · (Z ⊗ Z)T . (26)

2 I ⊗ Λ + Λ ⊗ I is a diagonal matrix whose ((i − 1)N + j)th diagonal entry,
the (i, j)th eigenvalue of TN×N , is λi,j = λi + λj.

3 Z ⊗ Z is an orthogonal matrix whose ((i − 1)N + j)th column, the
corresponding eigenvector, is zi ⊗ zj.

Proof. We use (1) and (3) from the previous Lemma. It is easy to see that
Z ⊗ Z is orthogonal:

(Z ⊗ Z)(Z ⊗ Z)T = (Z ⊗ Z)(ZT ⊗ ZT ) = ZZT ⊗ ZZT = I ⊗ I = I. 180 / 262
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The eigendecomposition of TN×N (cont.)

Also, it is easy to verify that I ⊗ Λ + Λ ⊗ I is diagonal, with entries λi + λj.
(26) follows from

(Z ⊗ Z) · (I ⊗ Λ + Λ ⊗ I) · (Z ⊗ Z)T = (Z ⊗ Z) · (I ⊗ Λ + Λ ⊗ I) · (ZT ⊗ ZT )

= (ZIZT ) ⊗ (ZΛZT ) + (ZΛZT ) ⊗ ZIZT

= I ⊗ TN + TN ⊗ I

= TN×N

Finally, from the definition of the Kronecker product, one can see that column
(i − 1)N + j of Z ⊗ Z is zi ⊗ zj. �

Remark. Similarly, Poisson’s equation in three dimensions leads to

TN×N×N = TN ⊗ IN ⊗ IN + IN ⊗ TN ⊗ IN + IN ⊗ IN ⊗ TN ,

with eigenvalues all possible triple sums of the λi’s, and eigenvector matrix
Z ⊗ Z ⊗ Z. Poisson’s equation in higher dimensions work analogously.
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Demo: Maple program with N = 21

It takes a few seconds to make 1000 iterations and obtain a 4-digit exact
solution:

T_NxN:=KroneckerProduct(T_N,I_N)+KroneckerProduct(I_N,T_N):
F_NxN := N^2 vector discretizing f(x,y)=x^2+y^2

H:=1.0-T_NxN/T_NxN[1,1]:
F:=F_NxN/T_NxN[1,1]:

V := Vector(N^2): # The solution vector
for i from 1 to 1000 do

V0 := copy(V):
V := H.V0 + F: # The Jacobi iteration step
print(i,Norm(V-V0),Norm(T_NxN.V-F_NxN)):

end do:

182 / 262



A sparse iterative model: Poisson’s Equation Poisson’s Equations in higher dimensions

Other solvers in Maple

We get more information by setting higher infolevel.

infolevel[LinearAlgebra]:=3;

The standard method uses LU decomposition. Very fast.

LinearSolve(T_NxN,F_NxN):

We can force Maple to use sparse iteration method. Very fast.

LinearSolve(T_NxN,F_NxN,method=SparseIterative):

We can invert a matrix of this size using floating number arithmetic.
However, the inversion in rational arithemtic is very slow.

MatrixInverse(1.0*T_NxN).F_NxN: # fast
MatrixInverse(T_NxN).F_NxN: # very slow
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Linear Programming Linear Inequalities

Subsection 1

Linear Inequalities
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Linear Programming Linear Inequalities

Resource Allocation Problem

A company produces two products: chairs and tables. They make a profit of
$40 on each chair and $50 on each table. A chair requres the following
resources to produce: 2 man-hours, 3 hours of machine time, and 1 unit of
wood. The table requires 2 man-hours, 1 hour of machine time, and 4 units of
wood. The factory has 60 man-hours, 75 machine hours, and 84 units of wood
available each day.
How should the resources (man-hours, machine-hours, and wood) be
allocated between the two products in order to maximize the factory’s profit?

maximize 40c + 50t (objective function)

such that


2c + 2t ≤ 60

3c + t ≤ 75

c + 4t ≤ 84

c, t ≥ 0

(constraints or bounds)
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Blending Problem

A feed company wants each feed bag that they produce to contain a minimum
of 120 units of protein and 80 units of calcium. Corn contains 10 units of
protein and 5 units of calcium per pound, and bone-meal contains 2 units of
protein and 5 units of calcium per pound.
If corn costs 8 cents per pound and bone-meal costs 4 cents per pound, how
much of each should they put in each bag, in order to minimize costs?

minimize 8c + 4b (objective function)

such that


10c + 2b ≥ 120

5c + 5b ≥ 80

c, b ≥ 0

(constraints or bounds)
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Transportation Problem

1 A bulldozer company has two warehouses (A and B) and three stores (1,
2 and 3).

2 The first warehouse has 40 bulldozers in stock and the second has 20.
3 The three stores have 25, 10, and 22 bulldozers, respectively, on order.
4 If CWS is used to represent the cost to transport a bulldozer from

warehouse W to store S, we know that

CA1 = 550, CA2 = 300, CA3 = 400, CB1 = 350, CB2 = 300, CB3 = 100.

5 Determine the routing that will satisfy the needs of the stores, at
minimum cost.
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Transportation Problem: The variables

1 Let XWS be the number of bulldozers transported from warehouse W to
store S.

2 We want to minimize the objective function

CA1XA1 + CA2XA2 + CA3XA3 + CB1XB1 + CB2XB2 + CB3XB3.

3 In praxis, XWN can only take nonnegative integer values.
4 The nonnegativity constraints are clearly

XA1,XA2,XA3,XB1,XB2,XB3 ≥ 0. (T1)

5 We forget about the condition of being integers. This would cause
enormous difficulties.

6 Remark. This technique of „forgetting” is called constraint relaxation.
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Transportation Problem: The constraints

1 The constraints
XA1 + XA2 + XA3 ≤ 40

XB1 + XB2 + XB3 ≤ 20
(T2)

state that the number of bulldozers leaving each warehouse cannot
exceed the warehouse capacity.

2 The constraints
XA1 + XB1 = 25

XA2 + XB2 = 10

XA3 + XB3 = 22

(T3)

state that the number of bulldozers arriving at the store must be equal to
the number ordered.

3 Actually, the number arriving must be at least as many as ordered.
However, the minimum cost will clearly not specify that we deliver more
bulldozers than ordered. (No relaxation.)
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Curve Fitting in L∞-norm

Definition: L∞-norm

The L∞-norm of the vector x = (x1, . . . , xN) ∈ RN is ‖x‖∞ = max{|x1|, . . . , |xN |}.

We want to find the straight line y = mx + b that best fits the data points

(u1, v1), . . . , (uN , vN)

in the L∞-norm.
In other words, we want to find m, b, ε such that

|mui + b − vi| ≤ ε for all i = 1, . . . ,N,

and, ε is as small as possible.
Using objective function and constraints:

ε→ min, where − ε ≤ mui + b − vi ≤ ε for all i = 1, . . . ,N.
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Curve Fitting in L1-norm

Definition: L1-norm

The L1-norm of the vector x = (x1, . . . , xN) ∈ RN is ‖x‖1 = |x1| + · · · + |xN |.

We want to find the best fitting line y = mx + b in the L1-norm.

That is, we want to find m, b, ε1, . . . , εN such that

|mui + b − vi| ≤ εi for all i = 1, . . . ,N,

and, ε1 + · · · + εN is as small as possible.

Using objective function and constraints:

ε1 + · · · + εN → min, where − εi ≤ mui + b − vi ≤ εi for all i = 1, . . . ,N.

Sometimes in practice, the „errors” mui + b − vi cannot take negative
values. Then the constraints become 0 ≤ mui + b − vi ≤ εi.
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Example of curve fitting

The points are:
(1, 1), (2, 3), (3, 2),
(4, 3), (5, 4).
The best fit lines are:

(L2) y = 0.6 x + 0.8

(L∞) y = 0.5 x + 1.25

(L1) y = 0.75 x + 0.25
−1 1 2 3 4 5

1

2

3

4

O

L∞

L1

L2
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Linear Programming (LP) problems

The inequality formulation for LP problems is the following:

minimize/maximize c1x1 + · · · + cnxn

subject to a11x1 + · · · + a1nxn ≥ b1

...

am1x1 + · · · + amnxn ≥ bm

Using summation notation:

minimize/maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi i = 1, . . . ,m

Remark. Equality constraints are replaced by two inequalities.
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Advantages of Linear Programming

1 LP problems can be solved very efficiently (several 10,000 variables and
constraints)

2 LP has an extensive, useful mathematical theory (optimality conditions,
sensitivity analysis, ...)

3 Widely available high-quality software:
Computational environments (MATLAB, MAPLE, Octave, Mathematica)
have optimization tools
Free software: GLPK, lpsolve, CVXOPT
Built-in solvers for MS Office, LibreOffice and Google Spreadsheets
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Subsection 2

Geometric solutions of LP problems
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Linear Programming Geometric solutions of LP problems

Geometry of systems of linear inequalities

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

O

−4 −2 2 4 6

−2

2

4

6

O

−x+3y=6

−x + 3y ≤ 6

−x + 3y ≥ 6
1 In a Cartesian coordinate system, the

equation a1x + a2y = b determines a line `.
2 The inequalities

a1x + a2y ≤ b

a1x + a2y ≥ b

determine the halfplanes `+, `− of `.
3 The system of linear inequalities

a11x + a12y ≥ b1
...

am1x + am2y ≥ bm

determine the intersection of halfplanes.
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Linear Programming Geometric solutions of LP problems

Example of infinite feasibility domain

Definition: Feasibility domain/Feasible region
A vector (x1, . . . , xn) satisfying the constraints of an LP problem is called a
feasible point. The set of feasible points is the feasibility domain or feasible
region.

3x − y ≥ 4

x + y ≥ 8

−3x + 5y ≥ 0
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Example of finite feasibility domain

3x − y ≥ 4

x + y ≥ 8

−3x + 5y ≥ 0

x + 3y ≤ 28

200 / 262
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Example of empty feasibility domain (infeasible)

The intersection of the two yellow domains is empty:

3x − y ≥ 4

x + y ≥ 8

−3x + 5y ≥ 0

x + 3y ≤ 28

22x + 13y ≥ 362
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Geometry of objective functions

1 The equations

c1x + c2y = d

c1x + c2y = d′

determine parallel lines.
2 The objective function

f (x, y) = c1x + c2y

corresponds to a
parallel class of lines.

3 The evaluation in P
corresponds to the
element of the class
through P.

1 2 3

1

2

3

−4x+10y=−5

−4x+10y=5

−4x+10y=15

−4x+10y=25
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LP problems in two variables

1 2 3

1

2

3

−4x+10y=−1

Task: Minimize −4x + 10y on the
grey domain of feasibility.

Solution: Among the parallel lines
−4x + 10y = d, find the one
which „supports” the gray
domain „from below”.

Observe: The optimum must be a vertex
(or side) of the gray polygon!
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Geometric solution of the Resource Allocation Problem
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Geometric solution of the Blending Problem
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Terminology of LP problems

1 It its most general form, an LP problem can be written as follows:

minimize/maximize c1x1 + · · · + cnxn

subject to a11x1 + · · · + a1nxn ≥ b1

...

am1x1 + · · · + amnxn ≥ bm

2 By multiplying the objective function with −1, one can swich between
minimization and maximization.

3 x∗ = (x∗1, . . . , x
∗
n) is an optimal solution, if it is feasible and the objective

function is minimal/maximal.
4 For a minimization problem the latter means

c1x∗1 + · · · + cnx∗n ≤ c1x1 + · · · + cnxn

for all feasible points (x1, . . . , xn).
5 The value c1x∗1 + · · · + cnx∗n is called the optimum of the LP problem.
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Feasibility

Concerning the solvability of LP problems, we have the following
possibilities:

Infeasible: The feasibility domain is empty.
Feasible: The feasibility domain is not empty (finite or infinite), and, the

objective function does take its extremum on the feasibility
domain.

Unbounded: The feasibility domain is infinite, and the objective function
does not take its extremum on the feasibility domain.

Example of unbounded problem

maximize x1 − 4x2

subject to −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2

x1, x2 ≥ 0

For any x1 ≥ 2, (x1, 0) is a feasible
point and as x1 gets large the
objective function does too.

Hence, the problem is unbounded.
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Subsection 3

Duality Theory
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Equivalence of LP problems

Definition: Equivalence of LP problems
Let us consider two LP problems with variables x1, . . . , xn and y1, . . . , ym. We
say that the two LP problems are equivalent, if their optima are equal, and,
there is a „nice” one-to-one mapping between their optimal solutions.

209 / 262



Linear Programming Duality Theory

The standard form of LP problems

Primal standard form:



maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

(PS)

Dual standard form:



minimize
m∑

i=1

biyi

subject to
m∑

i=1

yiaij ≥ cj j = 1, . . . , n

yi ≥ 0 i = 1, . . . ,m

(DS)
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The general form of LP problems

Primal general form:



maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

(PG)

Dual general form:


minimize

m∑
i=1

biyi

subject to
m∑

i=1

yiaij ≥ cj j = 1, . . . , n

(DG)
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Equivalence of primal standard and general forms

1 If a LP problem is given in the primal general form, then it can be
transformed to primal standard form by replacing the constraint∑

j aijxj = bi with the two inequalities∑
j

aijxj ≤ bi and
∑

j

−aijxj ≤ −bi.

2 If a LP problem is given in the primal standard form (PS), then it can be
transformed to primal general form by adding the slack variables

wi = bi −
∑

j

aijxj (i = 1, . . . ,m).

Then:


maximize

∑
j cjxj

subject to
∑

j aijxj + wi = bi i = 1, . . . ,m

wi, xj ≥ 0 i = 1, . . . ,m,

j = 1, . . . , n
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Duality

Definition: Duality of LP problems
We say that the LP problem (DS) is the dual of the standard LP problem (PS).

One can show that the dual of the dual of a standard LP problem is the
problem itself.

In order to achieve this, one has to write the dual problem (DS) in primal
standard form.

Example of dual problems:

(1)


max. x1 + 2x2

sub. to 4x1 + 3x2 ≤ 1

x1, x2 ≥ 0

and (2)


min. y1

sub. to 4y1 ≥ 1; 3y1 ≥ 2

y1 ≥ 0

213 / 262



Linear Programming Duality Theory

Weak Duality

Weak Duality Theorem
If x = (x1, . . . , xn) is a feasible point of the standard primal LP problem (PS),
and y = (y1, . . . , ym) is a feasible point for its dual problem (DS), then∑

j

cjxj ≤
∑

i

biyi.

Proof. (Easy.) Using xj, yi ≥ 0 and the constraints on cj, bi’s, we have

∑
j

cjxj ≤
∑

j

∑
i

yiaij

 xj =
∑

i,j

yiaijxj =
∑

i

∑
j

aijxj

 yi ≤
∑

i

biyi. �
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Strong Duality Theorem

The main result of the Duality Theory of Linear Programming is the

Strong Duality Theorem
If the primal standard problem has an optimal solution x∗ = (x∗1, . . . , x

∗
n), then

the dual also has an optimal solution y∗ = (y∗1, . . . , y
∗
m) such that∑

j

cjx∗j =
∑

i

biy∗i .

Proof. Hard. �

We will present two of the many applications of the Strong Duality Theorem.
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Optimality of solutions

1 For general optimization problems, it is almost as difficult to prove the
optimality of a given solution then to find an optimal solution.

2 Most of the LP solving methods produce the optimal solutions for the
primal and dual problems at the same time.

Application
Assume that the solutions (x∗1, . . . , x

∗
n), (y∗1, . . . , y

∗
m) of the standard primal and

dual problems are given. In order to prove their optimality, one has to check
that both are feasible, and show∑

j

cjx∗j =
∑

i

biy∗i .
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Feasibility of dual problems

1 The Weak Duality Theorem implies that any feasible solution of the
standard dual problem implies a bound for the primal problem.

2 Therefore, if the primal problem is unbounded, then the dual must be
infeasible.

3 In fact, only 4 possibilities can occur:

Corollary of the Strong Duality Theorem
One of the following holds:

1 Both (PS) and (DS) are feasible.
2 (PS) is unbounded and (DS) is infeasible.
3 (PS) is infeasible and (DS) is unbounded.
4 Both (PS) and (DS) are infeasible.
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The general form of LP problems (repetitorium)

We have already seen that LP problems in primal standard form are
equivalent with problems in primal general form:

Primal general form:



maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual general form:


minimize

m∑
i=1

biyi

subject to
m∑

i=1

yiaij ≥ cj j = 1, . . . , n

We now show that (PG) and (DG) are dual to each other.
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Duals of general form LP problems

Proposition
The general form LP problems (PG) and (DG) are dual to each other.

Proof. First we replace the equality constraints of (PG) by inequalities:

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i = 1, . . . ,m

n∑
j=1

−aijxj ≤ −bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

(27)

Now, the problem is in standard form with n variables and 2m + n constraints.
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Duals of general form LP problems (cont.)

Let us denote the dual variables associated with the first set of m constraints
by y+

i , and the remaining dual variables by y−i , i = 1, . . . ,m.
Then the dual problem is

minimize
m∑

i=1

biy+
i −

m∑
i=1

biy−i

subject to
m∑

i=1

y+
i aij −

m∑
i=1

y−i aij ≥ cj j = 1, . . . , n

y+
i , y
−
i ≥ 0 i = 1, . . . ,m

(28)
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Duals of general form LP problems (cont.)

If we put
yi = y+

i − y−i , i = 1, . . . ,m, (29)

the dual problem reduces to the dual general form

minimize
m∑

i=1

biyi

subject to
m∑

i=1

yiaij ≥ cj j = 1, . . . , n

(30)

In fact, (28) and (30) are equivalent:
1 If (y+, y−) is feasible for (28), then (29) defines a feasible point of (30).
2 Conversely, let (y1, . . . , ym) be feasible for (30) and define

y+
i =

yi if yi ≥ 0
0 otherwise

y−i =

yi if yi < 0
0 otherwise.

Then, (y+, y−) is feasible for (28). The objective function values are
equal. 221 / 262
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Subsection 4

The Simplex Method
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Brief history of the Simplex Method

1 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, ...): foundations
of LP, motivated by economic and logistics problems of WWII

2 1947 (Dantzig): simplex algorithm, published in 1949
3 1950s–60s applications in other fields (structural optimization, control

theory, filter design, ...)
4 1979 (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time)

than simplex in worst case, much slower in practice
5 1984 (Karmarkar): projective (interior-point) algorithm: polynomial-time

worst-case complexity, and efficient in practice
6 1984–today variations of interior-point methods (improved complexity

or efficiency in practice), software for large-scale problems

223 / 262



Linear Programming The Simplex Method

Overview

1 We have seen that the four formulations (PS), (DS), (PG), (DG) of LP
problems are equivalent.

2 The input of the simplex algorithm is the standard primal formulation.

(PS)



maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

The algorithm proceeds in two steps:
3 Phase I: (Initialization.) We transfer the problem into another LP

problem which is in standard primal formulation and the constants
b1, . . . , bm are nonnegative.

4 Phase II: By iteration, we solve the problem with nonnegative constants.
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Phase II: Illustration on an example

We illustrate how the simplex method works on a specific example:

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0

(31)

We start by adding so-called slack variables

w1 = 5 − 2x1 − 3x2 − x3 ≥ 0

w2 = 11 − 4x1 − x2 − 2x3 ≥ 0

w3 = 8 − 3x1 − 4x2 − 2x3 ≥ 0
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Initial feasible solution

We get the equivalent formulation of (31)

maximize ζ = 5x1 + 4x2 + 3x3

subject to w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3,w1,w2,w3 ≥ 0

(32)

1 The simplex method is an iterative process in which we start with a
solution x1, x2, . . . ,w3 that satisfies the equations in (32)

2 and then look for a new solution x̄1, x̄2, . . . , w̄3,
3 which is better in the sense that it has a larger objective function value:

5x̄1 + 4x̄2 + 3x̄3 > 5x1 + 4x2 + 3x3.

4 To start the iteration, we need the initial feasible solution

(x1, x2, x3,w1,w2,w3) = (0, 0, 0, 5, 11, 8).
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First improvement

1 We rewrite the equations in (32) as

ζ = 5x1 + 4x2 + 3x3

w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

(33)

2 Note that we introduced ζ for the value of the objective function.
3 We ask whether the initial solution can be improved.
4 Since the coefficient of x1 is 5 > 0, if we increase x1, we will increase ζ.
5 As x2 = x3 = 0, the limits on the increment are

w1 = 5 − 2x1 ≥ 0, w2 = 11 − 4x1 ≥ 0, w3 = 8 − 3x1 ≥ 0.

6 In other words, x1 ≤ 2.5, x1 ≤ 2.75 and x1 ≤ 2.66 must hold.
7 Our new, improved bound is (x1, x2, x3,w1,w2,w3) = (2.5, 0, 0, 0, 1, 0.5).
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Row operations on the equations

1 Our new, improved bound is (x1, x2, x3,w1,w2,w3) = (2.5, 0, 0, 0, 1, 0.5).
2 We observe that we still have 3 zero and 3 nonzero valiables.
3 The „zero” variables are called the independent, the others dependent.
4 Indeed, w1 „entered” and x1 „left” the set of independent variables
5 We express x1 by the independent variables w1, x2, x3:

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3.

6 The new equations are

ζ = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3

7 Remark. We can recover our current solution by setting the independent
variables to 0.
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Second iteration

1 We repeat the present form of the LP problem:

ζ = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3

(34)

2 The only variable of the objective function with positive coefficient is x3.
3 The nonnegativity of the dependent variables implies

2.5 − 0.5x3 ≥ 0, 1 ≥ 0, 0.5 − 0.5x3 ≥ 0.

4 Therefore, x3 = 1. The new feasible solution is

(x1, x2, x3,w1,w2,w3) = (2, 0, 1, 0, 1, 0).

5 The „entering” variable is w3 and the „leaving” variable is x3.
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End of the algorithm

1 We use the last equation of (35) to express x3 as

x3 = 1 + 3w1 + x2 − 2w3.

2 The result of the appropriate row operations is the system

ζ = 13 − w1 − 3x2 − w3

x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

(35)

3 Here, there is no variable in the objective function, for which an increase
would produce a corresponding increase in ζ.

4 The iteration ends.
5 Since (35) is completely equivalent to (31), the current solution

(x1, x2, x3,w1,w2,w3) = (2, 0, 1, 0, 1, 0) is optimal.
6 The optimum is ζ = 13.
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Terminology

1 The systems of equation (33)–(35) are called dictionaries. (Chvátal
1983)

2 Dependent variables are also called basic variables. Independent
variables are nonbasic.

3 The solutions we have obtained by setting the nonbasic variables to 0 are
called basic feasible solutions.

4 The step from one dictionary to the next is called a pivot.
5 There is often more than one choice for the entering and the leaving

variables. Particular rules that make the choice unambiguous are called
pivot rules.

6 Most texts describe the Simplex Method as a sequence of pivots on a
table of numbers called the simplex tableau.
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Phase I: Initialization

1 In order to start the previously presented Simplex Method, we needed an
initial feasible solution.

2 This was easy to find provided the right-hand sides of the problem were
all nonnegative.

3 If not, then we introduce an auxiliary problem

original



max
n∑

j=1

cjxj

s. t.
n∑

j=1

aijxj ≤ bi

xj ≥ 0

auxiliary



max −x0

s. t.
n∑

j=1

aijxj − x0 ≤ bi

xj ≥ 0

4 A initial feasible solution is x0 = maxi bi and xj = 0 (j = 1, . . . , n).
5 The original problem has a feasible solution if and only if the auxiliary

problem has objective value 0.
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Example of an auxiliary problem

1 We illustrate with an example the use of the auxiliary problem:

maximize −2x1 − x2

subject to −x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2

x2 ≤ 1

x1, x2 ≥ 0.



maximize −x0

subject to −x1 + x2 − x0 ≤ −1

−x1 − 2x2 − x0 ≤ −2

x2 − x0 ≤ 1

x0, x1, x2 ≥ 0.

(36)

1 The auxiliary problem (36) still has negatives on the right-hand side.
2 Using one row operation, we will be able to convert (36) into a system

with nonnegative right-hand sides.
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Example of an auxiliary problem (cont.)

1 We change to the usual notation and introduce the slack variables:

ξ = − x0

w1 = − 1 + x1 − x2 + x0

w2 = − 2 + x1 + 2x2 + x0

w3 = 1 − x2 + x0

(37)

2 We do one pivot with (leaving) variable x0 and the „most infeasible
variable” w2:

ξ = − 2 + x1 + 2x2 − w2

w1 = 1 − 3x2 + w2

x0 = 2 − x1 − 2x2 + w2

w3 = 3 − x1 − 3x2 + w2

(38)

3 As (37) has nonnegative constant terms, we can proceed as before.
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Row operations of an auxiliary problem

1 For the first step, we pick x2 to enter and w1 to leave the basis:

ξ = −1.33 + x1 − 0.67w1 − 0.33w2

x2 = 0.33 − 0.33w1 + 0.33w2

x0 = 1.33 − x1 + 0.67w1 + 0.33w2

w3 = 2 − x1 + w1

(39)

2 For the second step, we pick x1 to enter and x0 to leave the basis:

ξ = − x0

x2 = 0.33 − 0.33w1 + 0.33w2

x1 = 1.33 − x0 + 0.67w1 + 0.33w2

w3 = 0.67 + x0 + 0.33w1 − 0.33w2

(40)

3 This system is optimal with objective function value ξ = −x0 = 0.
4 This implies that the original problem has feasible points!
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End of the initialization

1 We now drop x0 from (40) and reintroduce the original objective function

ζ = −2x1 − x2 = −3 − w1 − w2.

2 Hence, the starting feasible dictionary for the original problem is

ζ = − 3 − w1 − w2

x2 = 0.33 − 0.33w1 + 0.33w2

x1 = 1.33 + 0.67w1 + 0.33w2

w3 = 0.67 + 0.33w1 − 0.33w2

(41)

3 We are lucky, this system is optimal for the original problem.
4 The optimum is ζ = −3 with solution

(x1, x2,w1,w2,w3) = (1.33, 0.33, 0, 0, 0.67).

5 In general, we continue with Phase II and apply the Simplex Method as
explained.
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Unboundedness

1 We have seen that the infeasibility of an LP problem can be noticed
during the initialization phase, when the optimal value of x0 is positive.

2 The unboundedness can be detected during the simplex algorithm as
shown in the following example:

ζ = 5 + x3 − x1

x2 = 5 + 2x3 − 3x1

x1 = 7 − 4x1

w3 = x1

(42)

3 Here, the entering variable is x3 and the bounds on the increment (given
by x1 = 0) are

5 + 2x3 ≥ 0, 7 ≥ 0, 0 ≥ 0.

4 This implies that arbitrarily large x3 yields a feasible point, hence the
problem is unbounded.
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Subsection 5

Other applications and generalizations

238 / 262



Linear Programming Other applications and generalizations

Networks and graphs

1 A network consists of two types of objects: nodes and arcs.
2 The nodes are connected by arcs. In the present context, arcs are

assumed to be directed.
3 The arc connecting node i to node j is an ordered pair (i, j) which we will

denote simply as ij.
4 We say that ij is an in-arc for j and on out-arc for i.

i j
ij

5 Let N denote the set of nodes.
6 LetA denote the set of arcs; this is a subset of all possible arcs:

A ⊆ {ij | i, j ∈ N , i , j}.

7 The pair (N ,A) is called a network. In mathematics, it is also called a
graph, a directed graph, or a digraph.
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Example of a network

N = {1, 2, . . . , 6}

A = {12, 23, 25, 34, 45, 51, 64}

6

4

5

1

2

3

The set of in-arcs of node 5 is {45, 25}.

The set of out-arcs of node 2 is {23, 25}.
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Source, target, capacity

In our network (N ,A) we highlight two specific nodes:
One node is called the source, which is denoted by s.
One node is called the target, which is denoted by t.

Moreover, we assume that a capacity function

c : A → R+

is assigned to our network.

6

4

5

1

2

3

s

t

1.2
6.5 3

0.2

2.1

1

10.6

3.2

4

2.9
5 0.01
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Flows

1 Our aim is to maximize the „flow” from the source to the target through
the networks such that the capacity constraints are kept.

2 A network flow is formalized as follows.
3 The function f : A → R is called a flow, if for all nodes i , s, t the

conservation law ∑
k, ki∈A

f (ki) =
∑

k, ik∈A

f (ik) (Cons[i])

holds.
4 The flow f is admissible if for any arc ij ∈ A,

0 ≤ f (ij) ≤ c(ij). (Adm[a])

5 The value of the flow f is measured by the function

Val(f ) =
∑

k, kt∈A

f (kt) −
∑

k, tk∈A

f (tk) =
∑

k, ks∈A

f (ks) −
∑

k, sk∈A

f (sk).
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Maximal Flow Problem

The maximal flow of the network is the solution of the following LP problem:

maximize Val(f )

subject to (Cons[i]) i ∈ N

(Adm[a]) a ∈ A

(MaxFlow)
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Source-target cuts

1 Let N = S∪̇T be a disjoint partition of N such that s ∈ S and t ∈ T .
2 Then we call the pair Σ = (S,T) a source-target cut of the network.

6

4

5

1

2

3

s

t

S T

3 We denote by Σ+ (or by Σ−) the arcs from S to T (or from T to S).
4 In our example Σ+ = {45, 6t} and Σ− = {32}.
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Minimal cuts and the easy inequality

1 We define the capacity of a source-target cut Σ by

Cap(Σ) =
∑
ij∈Σ+

c(ij).

2 The Minimal Cut Problem is to determine the cut of the network with
minimum capacity.

3 It is easy to show that for any flow f and any source-target cut Σ the
following inequality holds:

Val(f ) ≤ Cap(Σ). (43)

4 In fact, one has equality in (43).
5 This is rather surprising, since source-target cuts form a discrete set,

while flows are continuous.
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The „Min Cut Max Flow” duality

„Min Cut Max Flow” Theorem
Let f ∗ be a maximal flow and Σ∗ a minimal cut in the network (N ,A). Then

Val(f ∗) = Cap(Σ∗). (44)

Proof. We use the Duality Theory of Linear Programming. The dual LP
problem of (MaxFlow) is

minimize
∑
ij∈A

C(ij)wij

subject to uj − ui + wij ≥ 0 ij ∈ A

us − ut ≥ 1

wij ≥ 0 ij ∈ A

(MinCut)

The hard part is to show that in the solution u∗i ,w
∗
ij ∈ {0, 1}. Then,

S = {i | u∗i = 1} and T = {j | u∗j = 0} is a minimal cut. �
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The Assignment Problem

Suppose that a taxi firm has m cars available, ans n customers wishing to
be picked up. The cost for car i to pick up customer j is given in the
m × n matrix A = (aij).
The problem is to find an assigment

u : {1, . . . ,m} → {1, . . . , n}

between taxis and customers such that the total cost

Cu =

m∑
i=1

ai,u(i) is minimal.

We relax this problem by looking for a solution matrix X = (xij) such that

0 ≤ xij ≤ 1,
∑

i

xij = 1,
∑

k

xij = 1, (45)

and
∑

aijxij is minimal.
The Integrality Lemma ensures that in the optimal solution the entries xij

are 0 or 1.
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The Stable Marriage Problem

Given n men and n women, where each person has ranked all members
of the opposite sex with an unique number between 1 and n in order of
preference.
Marry the men and women together such that there are no two people of
opposite sex who would both rather have each other than their current
partners.
If there are no such people, all the marriages are stable.
Beside the constrains (45), we have the stability constrains∑

j>mw

xm,j +
∑
i>wm

xi,w + xm,w ≥ 1

for all man-woman pairs (m,w).
By theorems of Vate (1989)and Rothblum (1992), the optimal LP
solution is integer.
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The Hungarian Method

The Hungarian Method is a combinatorial optimization algorithm that
solves the Assignment Problem in polynomial time and which
anticipated later general primal-dual methods for LP problems.

It was developed and published by Harold Kuhn in 1955, who gave the
name „Hungarian Method” because the algorithm was largely based on
the earlier works of two Hungarian mathematicians: Dénes Kőnig and
Jenő Egerváry.

The Hungarian Method can be generalized for the Min-Cut-Max-Flow
problem resulting the Ford-Fulkerson algorithm.
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Generalizations of Linear Programming

Fractional Linear Programming

Convex Programming

Quadratic Programming

Semidefinite Programming (SDP)

Integer Programming (IP)

Mixed Integer Programming (MIP)
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Section 7

The Discrete Fourier Transform
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The Discrete Fourier Transform

Euler’s formula
For any real number ϕ

exp(iϕ) = eiϕ = cosϕ + i sinϕ.

The Discrete Fourier Transform (DFT)
Let f be a (complex) N × 1 vector. The Discrete Fourier Transform of f is
y = Af, where A = AN is an N × N matrix with akj = exp(2iπ(k − 1)(j − 1)/N).
In other words,

yk =

N∑
j=1

fj exp
(
2iπ(k − 1)(j − 1)

N

)
.
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Inverse DFT

Lemma

Define A as above. Then A−1 = Ā/N, where Ā is the complex (elementwise)
conjugate of A.

Observe, that

f = A−1v = (Āy)/N =

(
A

ȳ
N

)
.

That is, we may calculate the inverse of the DFT, if we take DFT of ȳ/N, and
then conjugate the result.

Example

Let f = [2, 16, 32, 128]T . Then the DFT of f is
178

−30 − 112i
−100

−30 + 112i

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ·


2
16
32
128
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The intuitive meaning of the DFT

Assume that y is a data sample, for example the temprature at a certain
weather station is recorded every hour for 100 years. (yk is the temprature
after k hours.) Here N ≈ 24 · 365 · 100 = 876000.

A daily cycle (24 hours long period), and an annual cycle (8760 hours long
period) will be easily observed.

If we calculate f = A−1y, it will have one sharp peak at f100, corresponding to
the annual cycle (frequency 100), and a sharp peak at f36500 corresponding to
the daily cycle (frequaency 36500).

Remark. In the literature DFT often means what we call the inverse DFT, and
vice versa.
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The intuitive meaning of the DFT

(Image source: http://felixonline.co.uk/science/2092/faster-fast-fourier-transform-found/) 255 / 262
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Applications

The DFT and its inverse have many applications:
1 digital signal processing
2 image procressing
3 spectral analysis
4 data compression
5 partial differential equations
6 sound filtering
7 multiplication of large numbers

(Image source: https://encrypted-tbn1.gstatic.com/images?q=tbn:

ANd9GcSrm03Rwy5UG9Ypz5GKtdTLOG-p_N23YC3CQdCmtDuyjxRvpm4HmQ) 256 / 262
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Subsection 1

The Fast Fourier Transform
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Computing DFT

To compute the DFT of a vector f is a matrix multiplicition, therefore it takes
O(N2) time.

We can greatly reduce the running time, if N is a power of 2: N = 2m. In this
case the matrix A has a very special structure.

The Fast Fourier Transform (FFT) was invented by Cooley and Tukey in
1965. It has running time O(mN) = O(N log N).
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FFT

Assume that f is an N × 1 vector, N = 2m, and we would like to calculate
y = Af the DFT of f.

We introduce the following notation: the k × k matrix Ak denotes the matrix of
the DFT as before, while Dk is a diagonal matrix of size k × k with diagonal
elements djj = exp(2iπ(j − 1)/k). Furthermore, let fodd = [f1, f3, . . . , fN−1]T and
feven = [f2, f4, . . . , fN]T .

Theorem
With the notation above

ANf =

[
AN/2 DN/2AN/2

AN/2 −DN/2AN/2

]
·

[
fodd

feven

]
=

[
AN/2fodd + DN/2AN/2feven

AN/2fodd − DN/2AN/2feven

]
.

The proof of the Theorem (once the result is known) is a straightforward
calculation.
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Divide and conquer

The Theorem shows us, that to calculate ANF, we basically need AN/2fodd and
AN/2feven. Once we know AN/2fodd and AN/2feven, it is easy to see, that we can
finish the calculation in just O(N) steps.

Thus we diveded the DFT of size N into two DFTs of size N/2. In O(log N)
steps we break down the problem into N obvious problem of size 1. The
recursive algorithm we sketched has running time O(N log N).

(Image source: http://cnx.org/content/m10250/latest/sys11.png)
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