1. Define the following concepts: Linear map, linear transformation, kernel, image, isomorphism. State the homomorphism theorem (dimension theorem). Desrcibe the concept of projections relating the subspaces $\operatorname{Im}(\pi)$ and $\operatorname{Ker}(\pi)$.
2. Given $A \in M_{n}(F)$ what are its eigenvalues, eigevectors and eigenspaces? Define the minimal polynomial and the characteristic polynomial of A. What are the relations between the concepts mentioned so far? State the Cayley-Hamilton Theorem. Construct a 3×3 complex matrix with two eigenvalues and a degree 3 minimal polynomial.
3. Define the real and complex Euclidean spaces and discuss their differences. State the theorems about their geometry. Does the following matrix of a real bilinear function define a Euclidean inner product?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] .
$$

4. Define when a matrix is orthogonal/unitary and give equivalent descriptions. Define the concept of orthogonal/unitary diagonalisation. State the theorems about orthogonal diagonalisability and about unitary diagonalisability. Give an example of a 2×2 real matrix that cannot be unitarily diagonalised.
5. What is the pseudoinverse of a $k \times n$ (real) matrix A ? Relate it to the row/column/null spaces of A. Describe how it can be used in "solving" linear equations. How can the pseudoinverse be computed (using full-rank factorisations)? State the Moore-Penrose theorem.
6. Give at least two types of dynamical problems that lead to assessing nonnegative matrices. Define the spectrum and spectral radius of a matrix and irreducibility. State Perron's Lemma and the Perron-Frobenius Theorem. Give the stationary distribution of a Markov chain with the following transition matrix $(0<1-a<b<1)$

$$
T=\left[\begin{array}{cc}
1-a & b \\
a & 1-b
\end{array}\right] .
$$

